Delgado-Notario Juan A, Power Stephen R, Knap Wojciech, Pino Manuel, Cheng JinLuo, Vaquero Daniel, Taniguchi Takashi, Watanabe Kenji, Velázquez-Pérez Jesús E, Meziani Yahya Moubarak, Alonso-González Pablo, Caridad José M
Departamento de Física Aplicada, Universidad de Salamanca, 37008 Salamanca, Spain.
School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland.
ACS Nano. 2025 Aug 5;19(30):27338-27350. doi: 10.1021/acsnano.5c05306. Epub 2025 Jul 21.
Moiré superlattices formed at the interface between stacked 2D atomic crystals offer limitless opportunities to design materials with widely tunable properties and engineer intriguing quantum phases of matter. However, despite progress, precise probing of the electronic states and tantalizingly complex band textures of these systems remain challenging. Here, we present gate-dependent terahertz photocurrent spectroscopy as a robust technique to detect, explore, and quantify intricate electronic properties in graphene moiré superlattices. Specifically, using terahertz light at different frequencies, we demonstrate distinct photocurrent regimes, evidencing the presence of avoided band crossings and tiny (∼1 to 20 meV) inversion-breaking global and local energy gaps in the miniband structure of minimally twisted graphene and hexagonal boron nitride heterostructures, key information that is inaccessible by conventional electrical or optical techniques. In the off-resonance regime, when the radiation energy is smaller than the gap values, enhanced zero-bias responsivities arise in the system due to the lower Fermi velocities and specific valley degeneracies of the charge carriers subjected to moiré superlattice potentials. In stark contrast, the above-gap excitations give rise to bulk photocurrents─intriguing optoelectronic responses related to the geometric Berry phase of the constituting electronic minibands. Besides their fundamental importance, these results place moiré superlattices as promising material platforms for advanced, sensitive, and low-noise terahertz detection applications.
在堆叠的二维原子晶体界面形成的莫尔超晶格为设计具有广泛可调特性的材料以及构建有趣的量子物相提供了无限机遇。然而,尽管取得了进展,但对这些系统的电子态和极其复杂的能带结构进行精确探测仍然具有挑战性。在此,我们展示了依赖于栅极的太赫兹光电流光谱技术,它是一种用于检测、探索和量化石墨烯莫尔超晶格中复杂电子特性的强大技术。具体而言,通过使用不同频率的太赫兹光,我们展示了不同的光电流状态,证明了在最小扭曲的石墨烯和六方氮化硼异质结构的微带结构中存在避免的能带交叉以及微小(约1至20毫电子伏特)的打破时间反演对称性的全局和局部能隙,这些关键信息是传统电学或光学技术无法获取的。在非共振状态下,当辐射能量小于能隙值时,由于受到莫尔超晶格势影响的电荷载流子具有较低的费米速度和特定的谷简并性,系统中会出现增强的零偏置响应率。与之形成鲜明对比的是,高于能隙的激发会产生体光电流,这是与构成电子微带的几何贝里相位相关的有趣光电响应。除了其基本重要性外,这些结果还表明莫尔超晶格是用于先进、灵敏和低噪声太赫兹检测应用的有前途的材料平台。