Kim Minju, Yeon Jeong-Mi, Park G Hwan, Kim Hyunjung, Kim Minseo, Choi Sun Yong, Hwang Sung Won, Lim Sung-Hwan, Lee Hanleem
Department of Chemistry, Myongji University 116 Myongji Ro Yongin Gyeonggi-do 17058 South Korea
Nano Materials R&BD Division, Cheorwon Plasma Research Institute 4620, Hoguk-ro, Galmal-eup, Cheorwon-gun Gangwon-do Republic of Korea.
RSC Adv. 2025 Jul 29;15(33):27016-27025. doi: 10.1039/d5ra04253d. eCollection 2025 Jul 25.
Core-shell colloidal nanocrystals (CNCs) are promising candidates for photoelectrochemical (PEC) photocathodes due to their strong light absorption, tunable bandgaps, and efficient charge separation. In this study, we developed a simple and versatile strategy for fabricating narrow-bandgap shells compatible with various core materials. Among the configurations tested, the matrix-type MoS shell demonstrated the most effective performance, significantly enhancing photocurrent generation and operational stability through improved surface defect passivation and charge carrier separation. Band-level engineering further enabled the formation of reverse type-I heterojunctions in both CdSe and CIS CNCs. Although type-II systems are traditionally favored for charge separation, our results show that the reverse type-I architecture not only enhances photocarrier separation under standard illumination but also effectively suppresses dark current. This is attributed to the dual physical and electronic passivation provided by the reverse type-I structure, which stabilizes the core-shell interface and reduces nonradiative recombination. Notably, the CuO/CuO/red CIS CNCs with a high indium ratio achieved the highest photocurrent density and retained over 86% of their initial performance after 24 hours of continuous operation at -0.1 V RHE, demonstrating excellent long-term stability. These results highlight the strong potential of matrix-type reverse type-I core-shell CNCs as efficient and durable photocathode materials for PEC applications.
核壳胶体纳米晶体(CNCs)因其强烈的光吸收、可调节的带隙和高效的电荷分离,有望成为光电化学(PEC)光阴极材料。在本研究中,我们开发了一种简单通用的策略来制备与各种核心材料兼容的窄带隙壳层。在所测试的结构中,基质型MoS壳层表现出最有效的性能,通过改善表面缺陷钝化和电荷载流子分离,显著提高了光电流的产生和运行稳定性。能带工程进一步促使在CdSe和CIS CNCs中形成反向I型异质结。虽然传统上II型系统更有利于电荷分离,但我们的结果表明,反向I型结构不仅在标准光照下增强了光载流子的分离,而且有效地抑制了暗电流。这归因于反向I型结构提供的物理和电子双重钝化作用,它稳定了核壳界面并减少了非辐射复合。值得注意的是,具有高铟比例的CuO/CuO/红色CIS CNCs实现了最高的光电流密度,并且在-0.1 V RHE下连续运行24小时后仍保留了超过86%的初始性能,展现出优异的长期稳定性。这些结果突出了基质型反向I型核壳CNCs作为PEC应用中高效耐用的光阴极材料的巨大潜力。