Soudani Ibtihel, Weslati Najoua, Znaidia Sami, Oueslati Abderrazek, Aydi Abdelhedi, Khirouni Kamel
Laboratory of Multifunctional Materials and Applications (LaMMA), LR16ES18, Faculty of Sciences of Sfax, University of Sfax BP 1171 3000 Sfax Tunisia
Laboratory for Spectroscopic Characterization and Optics of Materials, Faculty of Sciences, University of Sfax B. P. 1171 3000 Sfax Tunisia.
RSC Adv. 2025 Jul 29;15(33):26873-26885. doi: 10.1039/d5ra03292j. eCollection 2025 Jul 25.
Spinel lithium ferrites hold considerable significance in technological applications. Numerous investigations are conducted to explore the mechanisms underlying their properties. This work aims to detail the vibrational, optical, dielectric, thermodynamic, and magnetic properties of the LiMgFeO compound. Infrared and Raman spectroscopy further indicate the formation of the spinel phase in the samples. The optical study reveals a direct band gap with semiconducting characteristics, approximately 2.15 eV, with a low Urbach energy, indicating minimal disorder. Furthermore, precise calculations of thermodynamic parameters, including entropy change (Δ), enthalpy change (Δ), and free energy of activation (Δ), provide additional insights into the properties of the compound. High dielectric permittivity values, reaching around 10, are observed and attributed to the Maxwell-Wagner interfacial polarization mechanism. The remanent magnetization ( = 0.97 emu g) and coercive field ( = 4.55 Oe) extracted from the M-H loop are both notably low, clearly indicating the superparamagnetic nature of the sample. Our results show that LiMgFeO ferrite is a promising candidate for applications in multifunctional devices.
尖晶石型锂铁氧体在技术应用中具有相当重要的意义。人们进行了大量研究以探索其性能背后的机制。这项工作旨在详细阐述LiMgFeO化合物的振动、光学、介电、热力学和磁性特性。红外光谱和拉曼光谱进一步表明样品中形成了尖晶石相。光学研究揭示了具有半导体特性的直接带隙,约为2.15 eV,乌尔巴赫能量较低,表明无序程度最小。此外,对热力学参数的精确计算,包括熵变(Δ)、焓变(Δ)和活化自由能(Δ),为该化合物的性质提供了更多见解。观察到高介电常数,达到约10,并归因于麦克斯韦 - 瓦格纳界面极化机制。从M - H回线中提取的剩余磁化强度( = (此处原文有误,推测可能是Mr = 0.97 emu g)0.97 emu g)和矫顽场( = (此处原文有误,推测可能是Hc = 4.55 Oe)4.55 Oe)都明显较低,清楚地表明了样品的超顺磁性。我们的结果表明,LiMgFeO铁氧体是多功能器件应用的一个有前途的候选材料。