Shi Jingge, He Xu, Zhang Hao, Jiang Wei, Zhao Ruizheng, Wu Manman, Fang Yongzheng, Jiao Menggai, Liu Yiyang, Zhou Zhen
Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE2), School of Chemical Engineering, Zhengzhou University Zhengzhou Henan 450001 China
Zhengzhou BAK Battery Co., Ltd Zhengzhou Henan 451450 China.
Chem Sci. 2025 Jul 21;16(33):14956-14966. doi: 10.1039/d5sc04586j. eCollection 2025 Aug 20.
The shuttle effect and sluggish redox kinetics of polysulfides pose significant challenges to the long-cycle stability of alkali metal-sulfur batteries, necessitating the development of highly efficient catalysts. High-entropy alloys (HEAs) have emerged as promising electrocatalysts for energy storage due to their unique electronic properties and high configurational entropy. Tailoring the electronic configuration of HEAs to achieve a well-positioned d-band center is a vital strategy for enhancing catalytic performance in alkali metal-sulfur batteries systems. In this study, the electronic configurations of HEAs were systematically tuned by varying the fifth metal element. Among them, NiCoFeCuMo (HEA-Mo) exhibited an optimized electronic configuration and a favorable d-band center, fully demonstrating the "cocktail effect" and thereby enhancing interactions with polysulfides. To evaluate its practical performance, HEA-Mo was integrated into polypropylene (PP) separators (HEA-Mo@PP) for Li-S and room-temperature Na-S batteries, both exhibiting excellent cyclic stability attributed to enhanced polysulfides adsorption and catalytic conversion. This work provides critical insight into the rational design of non-noble HEAs electronic configuration modulation, offering a generalizable strategy for advancing next-generation energy storage systems.
多硫化物的穿梭效应和迟缓的氧化还原动力学对碱金属硫电池的长循环稳定性构成了重大挑战,因此需要开发高效催化剂。高熵合金(HEAs)因其独特的电子性质和高组态熵而成为有前景的储能电催化剂。调整高熵合金的电子构型以实现合适的d带中心是提高碱金属硫电池系统催化性能的关键策略。在本研究中,通过改变第五种金属元素系统地调整了高熵合金的电子构型。其中,NiCoFeCuMo(HEA-Mo)表现出优化的电子构型和良好的d带中心,充分展示了“鸡尾酒效应”,从而增强了与多硫化物的相互作用。为了评估其实际性能,将HEA-Mo集成到用于锂硫电池和室温钠硫电池的聚丙烯(PP)隔膜中(HEA-Mo@PP),二者均表现出优异的循环稳定性,这归因于多硫化物吸附和催化转化的增强。这项工作为非贵金属高熵合金电子构型调制的合理设计提供了关键见解,为推进下一代储能系统提供了一种可推广的策略。