Chen Hedong, Qiu Yecheng, Cai Zhiyuan, Liang Wenhao, Liu Lin, Li Manman, Hou Xianhua, Chen Fuming, Zhou Xunzhu, Cheng Tengfei, He Liqing, Wang Jiazhao, Zhang Xiao, Dou Shixue, Li Lin
Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Electronic Science and Engineering (School of Microelectronics), South China Normal University, Foshan, 528225, P. R. China.
School of Physics, South China Normal University, Guangzhou, 510006, China.
Angew Chem Int Ed Engl. 2025 Mar 24;64(13):e202423357. doi: 10.1002/anie.202423357. Epub 2025 Jan 17.
The heterojunction materials are considered as promising electrocatalyst candidates that empower advanced lithium-sulfur (Li-S) batteries. However, the detailed functional mechanism of heterojunction materials to boost the sulfur redox reaction kinetics remains unclear. Herein, we construct a multifunctional potential well-type BiTe/TiO topological insulator (TI) heterojunction with electric dipole domain to elucidate the synergistic mechanism, which facilitates rapid mass transport, strengthens polysulfide capture ability and accelerates polysulfide conversion. Therefore, the Li-S battery with BiTe/TiO TI heterojunction modified separator achieves high utilization of sulfur cathode, delivering a high reversible specific capacity of 1375 mAh g at 0.2 C and long cycling capability with a negligible capacity decay of 0.022 % per cycle over 1000 cycles at 1 C. Even with the high sulfur loading of 13.2 mg cm and low E/S ratio of 3.8 μL mg, a high area capacity of 11.2 mAh cm and acceptable cycling stability can be obtained. This work provides guidance for designing high-efficiency TI heterojunctions to promote the practical application of Li-S batteries.
异质结材料被认为是有前景的电催化剂候选物,可助力先进的锂硫(Li-S)电池。然而,异质结材料促进硫氧化还原反应动力学的详细功能机制仍不清楚。在此,我们构建了一种具有电偶极域的多功能势阱型BiTe/TiO拓扑绝缘体(TI)异质结,以阐明其协同机制,该机制有助于快速的质量传输、增强多硫化物捕获能力并加速多硫化物转化。因此,采用BiTe/TiO TI异质结修饰隔膜的锂硫电池实现了硫阴极的高利用率,在0.2 C下具有1375 mAh g的高可逆比容量,并且在1 C下循环1000次时具有可忽略不计的0.022% 每循环的容量衰减的长循环能力。即使在13.2 mg cm的高硫负载和3.8 μL mg的低E/S比下,仍可获得11.2 mAh cm的高面积容量和可接受的循环稳定性。这项工作为设计高效的TI异质结以促进锂硫电池的实际应用提供了指导。