Wang Chenyu, Yang Wenbo, Song Lanfeng, Cao Lanqing, Zhang Guokun, Gao Xiaofan, Zhu Xiujie, Jia Shipu, Yue Xiang, Li Chunyi, Wang Jincheng, Zhao Xin, Bai Haotian
Department of Plastic Surgery, The First Hospital of Jilin University, China.
Department of Orthopedics, The Second Hospital of Jilin University, China.
Mater Today Bio. 2025 Jul 15;34:102090. doi: 10.1016/j.mtbio.2025.102090. eCollection 2025 Oct.
Deer antlers, the only mammalian bony organs capable of complete regeneration, exhibit a growth rate of 2.7 cm/day, far surpassing human long bones (1 mm/day). Long-bone critical defects (LBCDs) occur when defects exceed intrinsic healing capacity. While antler stem cells drive regeneration, their immunogenicity limits clinical translation. Antler extracellular matrix (ECM) components have been proven to enhance bone repair, the role of its unique "longitudinal tubule-transverse connection" structure remains unexplored. Here, matrix scaffolds (devoid of cellular/active components) were prepared along longitudinal (L) or horizontal (H) axes, with cancellous scaffolds (R) as controls. Histological and in vitro analyses confirmed structural integrity and immunogenicity elimination. Bone marrow mesenchymal stem cells (BMSCs) exhibited structural guidance in morphology and migration on L. Ectopic implantation revealed no intrinsic osteogenic activity but demonstrated robust alignment of soft tissues along scaffold scaffolds. In rat femoral segmental defect models, L induced significantly greater depth and volume of oriented new bone (vs. H or R) while effectively blocking fibrous encapsulation. This study identifies antler-specific structural topology-rather than cellular or biochemical factors-as the critical osteoconductive driver enabling rapid bone regeneration. The findings establish a proof-of-concept for bioinspired structural designs in addressing LBCDs, providing guidance for the development of antler-derived bone replacement implants and biomimetic design of additive manufacturing implants.
鹿角是唯一能够完全再生的哺乳动物骨骼器官,其生长速度为每天2.7厘米,远远超过人类长骨(每天1毫米)。当骨缺损超过自身愈合能力时,就会出现长骨关键缺损(LBCD)。虽然鹿角干细胞驱动再生,但其免疫原性限制了临床应用。鹿角细胞外基质(ECM)成分已被证明可促进骨修复,但其独特的“纵向小管-横向连接”结构的作用仍未得到探索。在此,沿纵向(L)或横向(H)轴制备了基质支架(不含细胞/活性成分),以松质支架(R)作为对照。组织学和体外分析证实了结构完整性和免疫原性消除。骨髓间充质干细胞(BMSCs)在L支架上的形态和迁移表现出结构导向性。异位植入显示其没有内在成骨活性,但能使软组织沿支架有力地排列。在大鼠股骨节段性缺损模型中,L支架诱导的定向新骨深度和体积明显大于H或R支架,同时有效阻止了纤维包裹。本研究确定鹿角特有的结构拓扑而非细胞或生化因素是实现快速骨再生的关键骨传导驱动因素。这些发现为解决LBCD的仿生结构设计建立了概念验证,为鹿角衍生骨替代植入物的开发和增材制造植入物的仿生设计提供了指导。