Suppr超能文献

局部 EMT 重编程神经胶质祖细胞以促进脊髓修复。

Localized EMT reprograms glial progenitors to promote spinal cord repair.

机构信息

Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.

Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.

出版信息

Dev Cell. 2021 Mar 8;56(5):613-626.e7. doi: 10.1016/j.devcel.2021.01.017. Epub 2021 Feb 19.

Abstract

Anti-regenerative scarring obstructs spinal cord repair in mammals and presents a major hurdle for regenerative medicine. In contrast, adult zebrafish possess specialized glial cells that spontaneously repair spinal cord injuries by forming a pro-regenerative bridge across the severed tissue. To identify the mechanisms that regulate differential regenerative capacity between mammals and zebrafish, we first defined the molecular identity of zebrafish bridging glia and then performed cross-species comparisons with mammalian glia. Our transcriptomics show that pro-regenerative zebrafish glia activate an epithelial-to-mesenchymal transition (EMT) gene program and that EMT gene expression is a major factor distinguishing mammalian and zebrafish glia. Functionally, we found that localized niches of glial progenitors undergo EMT after spinal cord injury in zebrafish and, using large-scale CRISPR-Cas9 mutagenesis, we identified the gene regulatory network that activates EMT and drives functional regeneration. Thus, non-regenerative mammalian glia lack an essential EMT-driving gene regulatory network that reprograms pro-regenerative zebrafish glia after injury.

摘要

抗再生性瘢痕阻碍了哺乳动物脊髓的修复,这也是再生医学的主要障碍。相比之下,成年斑马鱼拥有专门的神经胶质细胞,这些细胞能够通过在切断的组织上形成一个有利于再生的桥来自发修复脊髓损伤。为了确定调节哺乳动物和斑马鱼之间不同再生能力的机制,我们首先定义了斑马鱼桥接神经胶质细胞的分子特征,然后与哺乳动物神经胶质细胞进行了跨物种比较。我们的转录组学研究表明,有利于再生的斑马鱼神经胶质细胞会激活上皮-间充质转化(EMT)基因程序,而 EMT 基因表达是区分哺乳动物和斑马鱼神经胶质细胞的主要因素。在功能上,我们发现斑马鱼脊髓损伤后,神经胶质前体细胞的局部龛位会经历 EMT,并且通过大规模的 CRISPR-Cas9 基因敲除,我们鉴定出了激活 EMT 并驱动功能再生的基因调控网络。因此,非再生性的哺乳动物神经胶质细胞缺乏一种必要的 EMT 驱动的基因调控网络,而这种网络可以在损伤后对有利于再生的斑马鱼神经胶质细胞进行重新编程。

相似文献

1
Localized EMT reprograms glial progenitors to promote spinal cord repair.
Dev Cell. 2021 Mar 8;56(5):613-626.e7. doi: 10.1016/j.devcel.2021.01.017. Epub 2021 Feb 19.
2
Progenitor-derived glia are required for spinal cord regeneration in zebrafish.
Development. 2023 May 15;150(10). doi: 10.1242/dev.201162. Epub 2023 May 22.
3
Neural cells and their progenitors in regenerating zebrafish spinal cord.
Int J Dev Biol. 2020;64(4-5-6):353-366. doi: 10.1387/ijdb.190130sg.
4
Radial glial progenitors repair the zebrafish spinal cord following transection.
Exp Neurol. 2014 Jun;256:81-92. doi: 10.1016/j.expneurol.2014.03.017. Epub 2014 Apr 8.
5
Injury-induced ctgfa directs glial bridging and spinal cord regeneration in zebrafish.
Science. 2016 Nov 4;354(6312):630-634. doi: 10.1126/science.aaf2679.
6
Fgf-dependent glial cell bridges facilitate spinal cord regeneration in zebrafish.
J Neurosci. 2012 May 30;32(22):7477-92. doi: 10.1523/JNEUROSCI.0758-12.2012.
7
Dtx2 Deficiency Induces Ependymo-Radial Glial Cell Proliferation and Improves Spinal Cord Motor Function Recovery.
Stem Cells Dev. 2024 Oct;33(19-20):540-550. doi: 10.1089/scd.2023.0247. Epub 2024 Aug 9.
8
Characterization of Proliferating Neural Progenitors after Spinal Cord Injury in Adult Zebrafish.
PLoS One. 2015 Dec 2;10(12):e0143595. doi: 10.1371/journal.pone.0143595. eCollection 2015.
9
Wnt/ß-catenin signaling is required for radial glial neurogenesis following spinal cord injury.
Dev Biol. 2015 Jul 1;403(1):15-21. doi: 10.1016/j.ydbio.2015.03.025. Epub 2015 Apr 14.
10
Cellular response after crush injury in adult zebrafish spinal cord.
Dev Dyn. 2010 Nov;239(11):2962-79. doi: 10.1002/dvdy.22438.

引用本文的文献

1
Mechanisms underpinning spontaneous spinal cord regeneration.
Development. 2025 Oct 15;152(20). doi: 10.1242/dev.204790. Epub 2025 Jul 30.
2
Effects of age on the response to spinal cord injury: optimizing the larval zebrafish model.
Dev Biol. 2025 Jul 3;526:111-127. doi: 10.1016/j.ydbio.2025.07.003.
3
The Critical Balance Between Quiescence and Reactivation of Neural Stem Cells.
Biomolecules. 2025 May 6;15(5):672. doi: 10.3390/biom15050672.
4
A single-cell landscape of the regenerating spinal cord of zebrafish.
Neural Regen Res. 2026 Feb 1;21(2):780-789. doi: 10.4103/NRR.NRR-D-24-01163. Epub 2025 Apr 30.
5
Blueprints for healing: central nervous system regeneration in zebrafish and neonatal mice.
BMC Biol. 2025 Apr 30;23(1):115. doi: 10.1186/s12915-025-02203-0.
6
Comparison of Spinal Cord Regeneration Capacity in Zebrafish and Medaka.
Neurochem Res. 2025 Apr 25;50(3):153. doi: 10.1007/s11064-025-04389-9.
7
SOX Genes in Spinal Cord Injury: Redefining Neural Stem Cell Regeneration Strategies.
Mol Neurobiol. 2025 Mar 29. doi: 10.1007/s12035-025-04882-w.
8
Enhancer-driven Shh signaling promotes glia-to-mesenchyme transition during bone repair.
Bone Res. 2025 Jan 26;13(1):16. doi: 10.1038/s41413-024-00396-8.
10
Novel nerve regeneration assessment method using adult zebrafish with crush spinal cord injury.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2025 Mar;211(2):185-197. doi: 10.1007/s00359-024-01723-4. Epub 2024 Nov 12.

本文引用的文献

1
Emerging Mechanisms by which EMT Programs Control Stemness.
Trends Cancer. 2020 Sep;6(9):775-780. doi: 10.1016/j.trecan.2020.03.011. Epub 2020 Apr 17.
2
BACH1 Promotes Pancreatic Cancer Metastasis by Repressing Epithelial Genes and Enhancing Epithelial-Mesenchymal Transition.
Cancer Res. 2020 Mar 15;80(6):1279-1292. doi: 10.1158/0008-5472.CAN-18-4099. Epub 2020 Jan 9.
4
Highly Efficient CRISPR-Cas9-Based Methods for Generating Deletion Mutations and F0 Embryos that Lack Gene Function in Zebrafish.
Dev Cell. 2019 Dec 2;51(5):645-657.e4. doi: 10.1016/j.devcel.2019.10.004. Epub 2019 Nov 7.
5
Comprehensive Integration of Single-Cell Data.
Cell. 2019 Jun 13;177(7):1888-1902.e21. doi: 10.1016/j.cell.2019.05.031. Epub 2019 Jun 6.
6
CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing.
Nucleic Acids Res. 2019 Jul 2;47(W1):W171-W174. doi: 10.1093/nar/gkz365.
7
Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.
Nat Commun. 2019 Apr 3;10(1):1523. doi: 10.1038/s41467-019-09234-6.
8
BTB and CNC homology 1 (Bach1) promotes human ovarian cancer cell metastasis by HMGA2-mediated epithelial-mesenchymal transition.
Cancer Lett. 2019 Mar 31;445:45-56. doi: 10.1016/j.canlet.2019.01.003. Epub 2019 Jan 14.
9
Repair Schwann cell update: Adaptive reprogramming, EMT, and stemness in regenerating nerves.
Glia. 2019 Mar;67(3):421-437. doi: 10.1002/glia.23532. Epub 2019 Jan 11.
10
Dimensionality reduction for visualizing single-cell data using UMAP.
Nat Biotechnol. 2018 Dec 3. doi: 10.1038/nbt.4314.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验