Wu Qiangen, Fang Jia-Long, Nagumalli Suresh K, Guo Xiaoqing, Beland Frederick A
Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA.
Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA.
Arch Toxicol. 2025 Jul 30. doi: 10.1007/s00204-025-04140-x.
Cannabidiol (CBD) undergoes oxidation to 7-hydroxy-CBD in the liver via cytochrome P450 enzymes. 7-Hydroxy-CBD can be further oxidized to 7-carboxy-CBD, the principal circulating metabolite in humans. An aldehyde intermediate, 7-formyl-CBD, is hypothesized to be the precursor of 7-carboxy-CBD; however, the formation of 7-formyl-CBD and the enzymes leading to its formation and metabolism have not been thoroughly investigated. Upon incubating 7-hydroxy-CBD with human liver S9 or microsomes, and using O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA) as a trapping agent, we demonstrated the formation of 7-formyl-CBD as its oxime derivative 7-pentafluorobenzyl oxime-CBD (7-PFBO-CBD). The transformation of 7-hydroxy-CBD to 7-formyl-CBD in S9 or microsomes required NAD or NADP. Trapping 7-formyl-CBD with PFBHA decreased the formation of 7-carboxy-CBD, indicating that the formation of 7-carboxy-CBD depends on the availability of 7-formyl-CBD. The flavonoid kaempferol, which inhibits xanthine oxidoreductase and hydroxysteroid dehydrogenases, suppressed the formation of 7-PFBO-CBD and 7-carboxy-CBD in human liver S9 and microsomes incubated with 7-hydroxy-CBD. The xanthine oxidoreductase inhibitor allopurinol and its substrate xanthine did not affect the metabolism of 7-hydroxy-CBD. The hydroxysteroids estradiol and dehydroepiandrosterone reduced the formation of 7-carboxy-CBD in liver microsomes and S9. These results suggest that alcohol oxidoreductases associated with hydroxysteroid metabolism may play a role in the conversion of 7-hydroxy-CBD to 7-formyl-CBD. The irreversible aldehyde dehydrogenase inhibitors, disulfiram and WIN 18,446, inhibited the formation of 7-carboxy-CBD and led to a significant accumulation of 7-PFBO-CBD in the S9 and microsomal incubations. The accumulation of the aldehyde intermediate may play a role in the enhanced cytotoxicity of 7-hydroxy-CBD in HepG2 cells when co-treated with disulfiram. These findings indicate that NAD(P)-dependent alcohol oxidoreductases may catalyze the conversion of 7-hydroxy-CBD to 7-formyl-CBD in human liver S9 and microsomes. The potentially toxic aldehyde intermediate is further oxidized by aldehyde dehydrogenase to 7-carboxy-CBD.
大麻二酚(CBD)在肝脏中通过细胞色素P450酶氧化为7-羟基-CBD。7-羟基-CBD可进一步氧化为7-羧基-CBD,这是人体内主要的循环代谢物。据推测,醛中间体7-甲酰基-CBD是7-羧基-CBD的前体;然而,7-甲酰基-CBD的形成以及导致其形成和代谢的酶尚未得到充分研究。将7-羟基-CBD与人肝脏S9或微粒体一起孵育,并使用O-(2,3,4,5,6-五氟苄基)羟胺(PFBHA)作为捕获剂,我们证明了7-甲酰基-CBD以其肟衍生物7-五氟苄基肟-CBD(7-PFBO-CBD)的形式形成。在S9或微粒体中,7-羟基-CBD向7-甲酰基-CBD的转化需要NAD或NADP。用PFBHA捕获7-甲酰基-CBD会减少7-羧基-CBD的形成,表明7-羧基-CBD的形成取决于7-甲酰基-CBD的可用性。抑制黄嘌呤氧化还原酶和羟类固醇脱氢酶的黄酮类化合物山奈酚,在与7-羟基-CBD一起孵育的人肝脏S9和微粒体中,抑制了7-PFBO-CBD和7-羧基-CBD的形成。黄嘌呤氧化还原酶抑制剂别嘌呤醇及其底物黄嘌呤不影响7-羟基-CBD的代谢。羟类固醇雌二醇和脱氢表雄酮减少了肝脏微粒体和S9中7-羧基-CBD的形成。这些结果表明,与羟类固醇代谢相关的醇氧化还原酶可能在7-羟基-CBD向7-甲酰基-CBD的转化中起作用。不可逆的醛脱氢酶抑制剂双硫仑和WIN 18,446抑制了7-羧基-CBD的形成,并导致在S9和微粒体孵育中7-PFBO-CBD的显著积累。当与双硫仑共同处理时,醛中间体的积累可能在增强7-羟基-CBD对HepG2细胞的细胞毒性中起作用。这些发现表明,NAD(P)依赖性醇氧化还原酶可能催化人肝脏S9和微粒体中7-羟基-CBD向7-甲酰基-CBD的转化。潜在有毒的醛中间体被醛脱氢酶进一步氧化为7-羧基-CBD。