Suppr超能文献

用于预测液化天然气全球贸易网络关联的机器学习方法。

Machine learning approaches for predicting the link of the global trade network of liquefied natural gas.

作者信息

Zhao Pei, Song Hao, Ling Guang

机构信息

Department of Educational Information Technology, Beijing Union Univeristy, Beijing, China.

Guang xi Key Laboratory of Culture and Tourism Smart Technology, Guilin Tourism University, Guilin, China.

出版信息

PLoS One. 2025 Jul 30;20(7):e0326952. doi: 10.1371/journal.pone.0326952. eCollection 2025.

Abstract

With the rising geopolitical tensions, predicting future trade partners has become a critical topic for the global community. Liquefied natural gas (LNG), recognized as the cleanest burning hydrocarbon, plays a significant role in the transition to a cleaner energy future. As international trade in LNG becomes increasingly volatile, it is essential to assist governments in identifying potential trade partners and analyzing the trade network. Traditionally, forecasts of future mineral and energy resource trade networks have relied on similarity indicators (e.g., CN, AA). This study employs complex network theory to illustrate the characteristics of nodes and edges, as well as the evolution of global LNG trade networks from 2001 to 2020. Utilizing node and edge data from these networks, this research applies machine learning algorithms to predict future links based on local and global similarity-based indices (e.g., CN, JA, PA). The findings indicate that random forest and decision tree algorithms, when used with local similarity-based indices, demonstrate strong predictive performance. The reliability of these algorithms is validated through the Receiver Operating Characteristic Curve (ROC). Additionally, a graph attention network model is developed to predict potential links using edge and motif data. The results indicate robust predictive performance. This study demonstrates that machine learning algorithms-specifically random forest and decision tree-outperform in predicting links within the global LNG trade network based on local information proximity, while the graph attention network, a deep learning model, exhibits stable optimization and effective feature learning. These findings suggest that machine learning approaches hold significant promise for mineral trade network analysis.

摘要

随着地缘政治紧张局势的加剧,预测未来贸易伙伴已成为全球社会的一个关键话题。液化天然气(LNG)被认为是燃烧最清洁的碳氢化合物,在向更清洁能源未来的转型中发挥着重要作用。由于LNG国际贸易变得越来越不稳定,协助各国政府识别潜在贸易伙伴并分析贸易网络至关重要。传统上,对未来矿产和能源资源贸易网络的预测依赖于相似性指标(如CN、AA)。本研究运用复杂网络理论来说明节点和边的特征,以及2001年至2020年全球LNG贸易网络的演变。利用这些网络的节点和边数据,本研究应用机器学习算法,基于局部和全局相似性指标(如CN、JA、PA)预测未来的联系。研究结果表明,随机森林和决策树算法与基于局部相似性的指标一起使用时,具有很强的预测性能。这些算法的可靠性通过接收者操作特征曲线(ROC)得到验证。此外,还开发了一种图注意力网络模型,使用边和基序数据预测潜在联系。结果表明具有强大的预测性能。本研究表明,机器学习算法——特别是随机森林和决策树——在基于局部信息接近度预测全球LNG贸易网络内的联系方面表现出色,而深度学习模型图注意力网络则表现出稳定的优化和有效的特征学习。这些发现表明,机器学习方法在矿产贸易网络分析方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef6e/12310025/4bc42a1bf08c/pone.0326952.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验