Promsuwan Kiattisak, Meng Lingyin, Thavarungkul Panote, Kanatharana Proespichaya, Limbut Warakorn, Mak Wing Cheung
Division of Sensor and Actuator Systems, Department of Physics, Chemistry and Biology, Linköping University, Linköping SE-581 83, Sweden.
Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
ACS Appl Mater Interfaces. 2025 Aug 13;17(32):46115-46125. doi: 10.1021/acsami.5c07083. Epub 2025 Jul 30.
Heterostructured organic-inorganic composites with syngenetic properties are highly appealing as advanced material interfaces for emerging electronic and bioelectronic device applications. For decades, Prussian blue (PB) has attracted tremendous attention due to its excellent and unique electrocatalytic properties as transducer materials, while conventional inorganic PB lacks sufficient stability and conductivity for advancing performance. Here, we demonstrate an innovative one-step progressive electrochemical deposition approach for the facile fabrication of heterostructured Poly(3,4-ethylenedioxythiophene) (PEDOT)-PB ( PEDOT-PB) transducer interface with excellent stability and electrocatalytic performance. The PEDOT-PB was prepared by the simultaneous potentiodynamic oxidation of Fe(II) precursors and electropolymerization of EDOT monomers, forming a porous and heterostructured PEDOT-PB interface with embedded PB nanoparticles. The PEDOT-PB possessed 16.6- and 11.8-fold higher surface concentration (Γ) of PB, delivered excellent cycling stability (96.7% after 50 scanning cycles), enhanced electrode kinetics characterized by the lowest (0.57 Ω), and the highest catalytic rate constant () of 1238 M s toward hydrogen peroxide (HO) reduction compared with unary PB and stepwise PEDOT-PB. Moreover, the PEDOT-PB showed good electrocatalytic stability for HO reduction in a static system (3000 s) and a flow injection system (100 measurement cycles), retaining 80.7% and 96.6% of its initial catalytic performance, respectively. Our development provides a facile route for the design and preparation of high-performance, stable, and heterostructured PEDOT-PB for advanced electrochemical transducers for sensors and biosensors, electrocatalysis, and biofuel cell applications.
具有共生特性的异质结构有机-无机复合材料作为新兴电子和生物电子器件应用的先进材料界面极具吸引力。几十年来,普鲁士蓝(PB)因其作为换能器材料具有优异且独特的电催化性能而备受关注,然而传统无机PB在提升性能方面缺乏足够的稳定性和导电性。在此,我们展示了一种创新的一步渐进电化学沉积方法,用于简便制备具有优异稳定性和电催化性能的异质结构聚(3,4-乙撑二氧噻吩)(PEDOT)-PB(PEDOT-PB)换能器界面。PEDOT-PB是通过Fe(II)前驱体的同步电位动力学氧化和EDOT单体的电聚合制备而成,形成了具有嵌入PB纳米颗粒的多孔异质结构PEDOT-PB界面。与一元PB和分步制备的PEDOT-PB相比,PEDOT-PB的PB表面浓度(Γ)高出16.6倍和11.8倍,具有出色的循环稳定性(50次扫描循环后为96.7%),以最低的电阻(0.57Ω)为特征的增强电极动力学,以及对过氧化氢(H₂O₂)还原的最高催化速率常数(k)为1238 M⁻¹ s⁻¹。此外,PEDOT-PB在静态系统(3000 s)和流动注射系统(100次测量循环)中对H₂O₂还原表现出良好的电催化稳定性,分别保留了其初始催化性能的80.7%和96.6%。我们的研究进展为设计和制备用于传感器、生物传感器、电催化和生物燃料电池应用的高性能、稳定且异质结构的PEDOT-PB先进电化学换能器提供了一条简便途径。