Biosensors and Bioelectronics Centre, Division of Sensor and Actuator Systems, Department of Physics, Chemistry and Biology , Linköping University , SE-581 83 Linköping , Sweden.
ACS Appl Mater Interfaces. 2019 Sep 18;11(37):34497-34506. doi: 10.1021/acsami.9b12946. Epub 2019 Sep 9.
The rapidly developing field of conducting polymers in organic electronics has many implications for bioelectronics. For biosensing applications, tailoring the functionalities of the conducting polymer's surface is an efficient approach to improve both sensitivity and selectivity. Here, we demonstrated a facile and economic approach for the fabrication of a high-density, negatively charged carboxylic-acid-group-functionalized PEDOT (PEDOT:COOH) using an inexpensive ternary carboxylic acid, citrate, as a dopant. The polymerization efficiency was significantly improved by the addition of LiClO as a supporting electrolyte yielding a dense PEDOT:COOH sensing interface. The resulting PEDOT:COOH interface had a high surface density of carboxylic acid groups of 0.129 μmol/cm as quantified by the toluidine blue O (TBO) staining technique. The dopamine response measured with the PEDOT:COOH sensing interface was characterized by cyclic voltammetry with a significantly reduced Δ of 90 mV and a 3-fold increase in the value compared with those of the nonfunctionalized PEDOT sensing interface. Moreover, the cyclic voltammetry and electrochemical impedance spectroscopy results demonstrated the increased electrode kinetics and highly selective discrimination of dopamine (DA) in the presence of the interferents ascorbic acid (AA) and uric acid (UA), which resulted from the introduction of negatively charged carboxylic acid groups. The negatively charged carboxylic acid groups could favor the transfer, preconcentration, and permeation of positively charged DA to deliver improved sensing performance while repelling the negatively charged AA and UA interferents. The PEDOT:COOH interface facilitated measurement of dopamine over the range of 1-85 μM, with a sensitivity of 0.228 μA μM, which is 4.1 times higher than that of a nonfunctionalized PEDOT electrode (0.055 μA μM). Our results demonstrate the feasibility of a simple and economic fabrication of a high-density PEDOT:COOH interface for chemical sensing, which also has the potential for coupling with other biorecognition molecules via carboxylic acid moieties for the development of a range of advanced PEDOT-based biosensors.
在有机电子学中,导电聚合物的快速发展对生物电子学有很多影响。对于生物传感应用,通过对导电聚合物表面的功能进行调整,是提高其灵敏度和选择性的有效方法。在这里,我们展示了一种简单且经济的方法,使用廉价的三元羧酸柠檬酸作为掺杂剂,制备高密度、带负电荷的羧酸基团功能化的聚 3,4-乙烯二氧噻吩(PEDOT:COOH)。通过添加 LiClO 作为支持电解质,聚合效率显著提高,得到了致密的 PEDOT:COOH 传感界面。通过甲苯胺蓝 O(TBO)染色技术定量,所得 PEDOT:COOH 界面的羧酸基团表面密度高达 0.129 μmol/cm。与非功能化的 PEDOT 传感界面相比,使用 PEDOT:COOH 传感界面测量多巴胺的循环伏安法的 Δ 显著降低了 90 mV,而 值增加了 3 倍。此外,循环伏安法和电化学阻抗谱结果表明,在存在干扰物抗坏血酸(AA)和尿酸(UA)的情况下,引入带负电荷的羧酸基团后,电极动力学得到了提高,并且对多巴胺(DA)具有高度选择性的区分。带负电荷的羧酸基团有利于带正电荷的 DA 的转移、预浓缩和渗透,从而提供了改进的传感性能,同时排斥带负电荷的 AA 和 UA 干扰物。PEDOT:COOH 界面有利于在 1-85 μM 的范围内测量多巴胺,灵敏度为 0.228 μA μM,是未功能化的 PEDOT 电极(0.055 μA μM)的 4.1 倍。我们的结果证明了通过简单且经济的方法制备高密度 PEDOT:COOH 界面用于化学传感的可行性,该界面还可以通过羧酸部分与其他生物识别分子结合,用于开发一系列先进的基于 PEDOT 的生物传感器。