Dorosti Shadi, Landry Thomas, Brewer Kimberly, Forbes Alyssa, Davis Christa, Brown Jeremy
School of Biomedical Engineering, Dalhousie University, Halifax, Canada.
IWK Health Centre, Halifax, Canada.
Sci Data. 2025 Jul 30;12(1):1322. doi: 10.1038/s41597-025-05619-z.
Glioblastoma multiforme (GBM) is the most aggressive type of brain cancer, making effective treatments essential to improve patient survival. To advance the understanding of GBM and develop more effective therapies, preclinical studies commonly use mouse models due to their genetic and physiological similarities to humans. In particular, the GL261 mouse glioma model is employed for its reproducible tumor growth and ability to mimic key aspects of human gliomas. Ultrasound imaging is a valuable modality in preclinical studies, offering real-time, non-invasive tumor monitoring and facilitating treatment response assessment. Furthermore, its potential therapeutic applications, such as in tumor ablation, expand its utility in preclinical studies. However, real-time segmentation of GL261 tumors during surgery introduces significant complexities, such as precise tumor boundary delineation and maintaining processing efficiency. Automated segmentation offers a solution, but its success relies on high-quality datasets with precise labeling. Our study introduces the first publicly available ultrasound dataset specifically developed to improve tumor segmentation in GL261 glioblastomas, providing 1,856 annotated images to support AI model development in preclinical research. This dataset bridges preclinical insights and clinical practice, laying the foundation for developing more accurate and effective tumor resection techniques.
多形性胶质母细胞瘤(GBM)是最具侵袭性的脑癌类型,因此有效的治疗对于提高患者生存率至关重要。为了增进对GBM的了解并开发更有效的治疗方法,临床前研究通常使用小鼠模型,因为它们在基因和生理方面与人类相似。特别是,GL261小鼠胶质瘤模型因其可重复的肿瘤生长以及模拟人类胶质瘤关键特征的能力而被采用。超声成像在临床前研究中是一种有价值的方式,可提供实时、非侵入性的肿瘤监测并有助于评估治疗反应。此外,其潜在的治疗应用,如肿瘤消融,扩大了其在临床前研究中的效用。然而,手术过程中对GL261肿瘤进行实时分割带来了重大复杂性,如精确勾勒肿瘤边界和保持处理效率。自动分割提供了一种解决方案,但其成功依赖于带有精确标注的高质量数据集。我们的研究推出了首个专门为改善GL261胶质母细胞瘤的肿瘤分割而开发的公开可用超声数据集,提供了1856张标注图像,以支持临床前研究中的人工智能模型开发。该数据集架起了临床前见解与临床实践之间的桥梁,为开发更准确有效的肿瘤切除技术奠定了基础。