Igomah Godwin O, Nelson Favour A, Sead Fadhil Faez, Runde Musa, Hossain Ismail, Ayi Ayi A
Department of Physics, Faculty of Physical Sciences, University of Calabar Calabar Nigeria.
Department of Pure and Industrial Chemistry, University of Calabar Calabar Nigeria
RSC Adv. 2025 Jul 30;15(33):27113-27127. doi: 10.1039/d5ra03949e. eCollection 2025 Jul 25.
In the quest for multifunctional hydrogen storage materials, this study investigates the structural, electronic, and optical properties of NbH, MgH, and a series of Mg-substituted NbH compounds (Mg-NbH, Mg-NbH, and Mg-NbH) using first-principles density functional theory (DFT) based on GGA/PBE and HSE03 methods. The motivation stems from the need to overcome the well-known limitations of MgH, particularly its high desorption temperature and poor reversibility, by introducing Mg into the NbH fluorite framework. Structural optimization revealed a fluorite-type geometry, with Mg substitution inducing moderate lattice distortion and increasing unit cell volume from 97.22 to 103.45 Å. The Mg-NbH system achieved a high density of 10.78 g cm and exhibited a favorable hydrogen gravimetric capacity of 3.33 wt%, offering a promising trade-off between storage potential and structural stability. Electronic structure analysis confirmed metallicity across all substituted systems, while MgH retained a non-metallic nature. A progressive decrease in total density of states was observed from 7.0 (NbH) to 2.0 (Mg-NbH), suggesting tunable electronic characteristics. Optical studies revealed that Mg-NbH displayed the strongest dielectric response ( ≈ 85), the highest refractive index ( ≈ 3.2), and reduced optical losses compared to its parent compounds. Notably, it retained a high optical conductivity (∼13 S m) and strong absorption in the visible range, making it a potential candidate for photocatalytic and optoelectronic applications. These results demonstrate that Mg substitution into NbH significantly enhances its multifunctional behavior, offering a viable pathway to improve hydride-based materials for advanced hydrogen storage and light-harvesting technologies.
在寻找多功能储氢材料的过程中,本研究使用基于广义梯度近似(GGA)/Perdew-Burke-Ernzerhof(PBE)和HSE03方法的第一性原理密度泛函理论(DFT),研究了NbH、MgH以及一系列Mg取代的NbH化合物(Mg-NbH、Mg-NbH和Mg-NbH)的结构、电子和光学性质。其动机源于需要通过将Mg引入NbH萤石框架来克服MgH众所周知的局限性,特别是其高解吸温度和较差的可逆性。结构优化揭示了一种萤石型几何结构,Mg取代引起适度的晶格畸变,并使晶胞体积从97.22 Å增加到103.45 Å。Mg-NbH体系实现了10.78 g/cm³的高密度,并表现出3.33 wt%的良好氢重量容量,在储存潜力和结构稳定性之间提供了有前景的权衡。电子结构分析证实所有取代体系均具有金属性,而MgH保留了非金属性质。从NbH的7.0到Mg-NbH的2.0,观察到总态密度逐渐降低,表明电子特性可调节。光学研究表明,与母体化合物相比,Mg-NbH表现出最强的介电响应(ε≈85)、最高的折射率(n≈3.2)和降低的光学损耗。值得注意的是,它在可见光范围内保持了高电导率(~13 S/m)和强吸收,使其成为光催化和光电子应用的潜在候选材料。这些结果表明,Mg取代NbH显著增强了其多功能行为,为改进用于先进储氢和光捕获技术的氢化物基材料提供了一条可行的途径。