Suppr超能文献

用于临界尺寸骨缺损的增材制造可生物降解多孔铁锰钙黄长石支架:首次评估

Additively manufactured biodegradable porous FeMn-akermanite scaffolds for critical-size bone defects: the first evaluation.

作者信息

Putra Niko E, Xu Jietao, Leeflang Marius A, Kops Nicole, Klimopoulou Maria, Moosabeiki Vahid, Fratila-Apachitei Lidy E, Zhou Jie, van Osch Gerjo J V M, Farrell Eric, Zadpoor Amir A

机构信息

Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, the Netherlands.

Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou Medical College People's Hospital, Hangzhou, Zhejiang, China.

出版信息

Mater Today Bio. 2025 Jul 21;34:102123. doi: 10.1016/j.mtbio.2025.102123. eCollection 2025 Oct.

Abstract

Additively manufactured (AM) iron (Fe)-based scaffolds have been developed as promising biodegradable bone-substituting biomaterials. Multi-material extrusion-based 3D printing has recently yielded Fe-manganese (Mn) alloy-based scaffolds that can resolve ferromagnetism and cytotoxicity associated with Fe-based biomaterials. Herein, we, for the first time, present the findings from study on extrusion-based AM FeMn-akermanite (Ak) scaffolds for critical-size bone defect repair. The scaffolds comprised Fe, 35 wt% Mn, and 20 or 30 vol% Ak, with microporous struts and 61-63 % porosity. Both scaffolds exhibited mechanical properties within the range of trabecular bone and provided suitable sites for Ca/P deposition during biodegradation. cell cultures demonstrated favorable cell responses without negating the osteogenic potential of cells. An study was conducted in a murine semi-orthotopic subcutaneous model. With this model, 4 bovine bone plugs were implanted subcutaneously with critical-size defects created at their cores. Scaffolds were placed into these critical-size defects to assess biodegradation and bone formation. After 16 weeks, the volume of scaffolds decreased by 6-8 %. The FeMn-20Ak scaffolds retained their yield strength and elastic modulus during the 16 weeks , whereas the mechanical integrity of FeMn-30Ak scaffolds deteriorated after mechanical push-out tests. Excellent osseointegration of both scaffold groups was apparent. 3D reconstruction of CT images revealed that FeMn-30Ak scaffolds had more newly formed tissue in the macro-pores than FeMn-20Ak. Altogether, our findings demonstrate the potential of AM FeMn-Ak scaffolds as biodegradable bone substitutes, encouraging further research in a large animal model.

摘要

增材制造(AM)铁(Fe)基支架已被开发为有前景的可生物降解骨替代生物材料。基于多材料挤出的3D打印最近生产出了铁锰(Mn)合金基支架,该支架可以解决与铁基生物材料相关的铁磁性和细胞毒性问题。在此,我们首次展示了关于基于挤出的AM FeMn-钙黄长石(Ak)支架用于关键尺寸骨缺损修复的研究结果。这些支架包含Fe、35 wt%的Mn以及20或30 vol%的Ak,具有微孔支柱和61 - 63%的孔隙率。两种支架的力学性能都在松质骨范围内,并在生物降解过程中为钙/磷沉积提供了合适的位点。细胞培养显示出良好的细胞反应,且没有否定细胞的成骨潜力。在小鼠半原位皮下模型中进行了一项研究。利用该模型,将4个牛骨栓皮下植入,其核心部位制造出关键尺寸的缺损。将支架放入这些关键尺寸的缺损中以评估生物降解和骨形成情况。16周后,支架体积减少了6 - 8%。FeMn-20Ak支架在16周内保持了其屈服强度和弹性模量,而FeMn-30Ak支架在机械推出试验后力学完整性恶化。两个支架组都表现出优异的骨整合。CT图像的3D重建显示,FeMn-30Ak支架的大孔中比FeMn-20Ak有更多新形成的组织。总之,我们的研究结果证明了AM FeMn-Ak支架作为可生物降解骨替代物的潜力,鼓励在大型动物模型中进行进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdd8/12308005/e8d9d96741dd/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验