Zell Zachary A, Mansard Vincent, Wright Jeremy, Kim KyuHan, Choi Siyoung Q, Squires Todd M
Department of Chemical Engineering, University of California, Santa Barbara, 93106-5080, USA.
J Rheol (N Y N Y). 2016 Jan;60(1):141-159. doi: 10.1122/1.4937931. Epub 2016 Jan 1.
We describe a microrheological strategy that enables sensitive surface shear rheology measurements of surfactant-laden interfaces, with the capacity to simultaneously visualize deforming interfaces. This technique utilizes a ferromagnetic microbutton probe pinned to a fluid-fluid interface, and actively torqued or forced with externally-controlled electromagnets. Various modes of operation are possible: small-amplitude oscillatory rotations, which provide frequency-dependent viscoelastic shear moduli; controlled torque (analogous to fixing shear stress); controlled rotation rate (analogous to fixing strain rate), and imposed force (analogous to active, translational microrheology). The circular shape of the probe ensures pure shear strains (when driven to rotate). We describe the experimental apparatus, its measurement limits and sources of error. We then highlight its versatility and capabilities with measurements on a variety of qualitatively distinct systems, including purely viscous monolayers, block-copolymer interfaces, aging and evolving interfaces, colloidal monolayers, and bulk rheometry of Newtonian and viscoelastic materials, with sample volumes as small as 2 l.
我们描述了一种微观流变学策略,该策略能够对负载表面活性剂的界面进行灵敏的表面剪切流变学测量,同时具备可视化变形界面的能力。这项技术利用一个固定在流体-流体界面上的铁磁微纽扣探针,并通过外部控制的电磁铁对其进行主动扭转或施加力。存在多种操作模式:小振幅振荡旋转,可提供频率相关的粘弹性剪切模量;控制扭矩(类似于固定剪切应力);控制旋转速率(类似于固定应变率),以及施加力(类似于主动平移微观流变学)。探针的圆形确保了纯剪切应变(当驱动其旋转时)。我们描述了实验装置、其测量极限和误差来源。然后,我们通过对各种性质不同的系统进行测量来突出其多功能性和能力,这些系统包括纯粘性单分子层、嵌段共聚物界面、老化和演化中的界面、胶体单分子层,以及牛顿材料和粘弹性材料的本体流变学,样品体积小至2微升。