Suppr超能文献

整合多组学和机器学习揭示了一种与免疫原性细胞死亡相关的特征,用于结直肠癌的预后分层和治疗优化。

Integrated multi-omics and machine learning reveal an immunogenic cell death-related signature for prognostic stratification and therapeutic optimization in colorectal cancer.

作者信息

Hou Siyu, Heng Shanshan, Xie Shaozhuo, Zhao Yuanchun, Chen Jiajia, Yu Chunjiang, Lin Yuxin, Qi Xin

机构信息

School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China.

Suzhou Industrial Park Institute of Services Outsourcing, Suzhou, China.

出版信息

Front Immunol. 2025 Jul 16;16:1606874. doi: 10.3389/fimmu.2025.1606874. eCollection 2025.

Abstract

Colorectal cancer (CRC) continues to rise in global incidence and remains a leading cause of cancer-related mortality. Immunogenic cell death (ICD) has emerged as a critical modulator of tumor microenvironment (TME) dynamics; however, its prognostic implications and therapeutic potential in CRC require systematic characterization. Through the integrative analysis of single-cell RNA sequencing and bulk transcriptomic data, 11 ICD-related genes with prognostic significance were identified in CRC. A comprehensive computational framework was then employed to evaluate 101 machine learning combinations, ultimately constructing an optimized 11-gene ICD-related signature (ICDRS) by integrating StepCox [forward] and RSF. The ICDRS exhibited strong predictive performance for overall survival in CRC patients across the training and validation datasets. Notably, the ICDRS-based nomogram achieved outstanding time-dependent AUCs (>0.90) for 1- to 3-year survival prediction. Multidimensional analysis revealed significant associations between ICDRS-derived risk score and distinct immune infiltration patterns, immunotherapy response and TME characteristics. Furthermore, a novel macrophage subtype, SPP1/SLC11A1, was discovered and characterized by high infiltration levels. Drug repurposing analysis indicated Olaparib as a potential therapeutic candidate for high-risk CRC patients. Therefore, this study establishes ICDRS as a promising tool for CRC prognosis and immunotherapy, with future validation studies planned to guide personalized treatment strategies.

摘要

结直肠癌(CRC)的全球发病率持续上升,仍然是癌症相关死亡的主要原因。免疫原性细胞死亡(ICD)已成为肿瘤微环境(TME)动态变化的关键调节因子;然而,其在CRC中的预后意义和治疗潜力需要系统的表征。通过对单细胞RNA测序和批量转录组数据的综合分析,在CRC中鉴定出11个具有预后意义的ICD相关基因。然后采用一个综合的计算框架来评估101种机器学习组合,最终通过整合StepCox[向前]和随机生存森林(RSF)构建了一个优化的11基因ICD相关特征(ICDRS)。ICDRS在训练和验证数据集中对CRC患者的总生存期表现出强大的预测性能。值得注意的是,基于ICDRS的列线图在1至3年生存预测中实现了出色的时间依赖性曲线下面积(AUCs)(>0.90)。多维度分析揭示了ICDRS衍生的风险评分与不同的免疫浸润模式、免疫治疗反应和TME特征之间的显著关联。此外,还发现并鉴定了一种新的巨噬细胞亚型SPP1/SLC11A1,其具有高浸润水平。药物再利用分析表明奥拉帕尼是高危CRC患者的潜在治疗候选药物。因此,本研究将ICDRS确立为CRC预后和免疫治疗的一个有前景的工具,计划开展未来的验证研究以指导个性化治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd1f/12307400/b53c28b4d113/fimmu-16-1606874-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验