Hou Siyu, Heng Shanshan, Xie Shaozhuo, Zhao Yuanchun, Chen Jiajia, Yu Chunjiang, Lin Yuxin, Qi Xin
School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China.
Suzhou Industrial Park Institute of Services Outsourcing, Suzhou, China.
Front Immunol. 2025 Jul 16;16:1606874. doi: 10.3389/fimmu.2025.1606874. eCollection 2025.
Colorectal cancer (CRC) continues to rise in global incidence and remains a leading cause of cancer-related mortality. Immunogenic cell death (ICD) has emerged as a critical modulator of tumor microenvironment (TME) dynamics; however, its prognostic implications and therapeutic potential in CRC require systematic characterization. Through the integrative analysis of single-cell RNA sequencing and bulk transcriptomic data, 11 ICD-related genes with prognostic significance were identified in CRC. A comprehensive computational framework was then employed to evaluate 101 machine learning combinations, ultimately constructing an optimized 11-gene ICD-related signature (ICDRS) by integrating StepCox [forward] and RSF. The ICDRS exhibited strong predictive performance for overall survival in CRC patients across the training and validation datasets. Notably, the ICDRS-based nomogram achieved outstanding time-dependent AUCs (>0.90) for 1- to 3-year survival prediction. Multidimensional analysis revealed significant associations between ICDRS-derived risk score and distinct immune infiltration patterns, immunotherapy response and TME characteristics. Furthermore, a novel macrophage subtype, SPP1/SLC11A1, was discovered and characterized by high infiltration levels. Drug repurposing analysis indicated Olaparib as a potential therapeutic candidate for high-risk CRC patients. Therefore, this study establishes ICDRS as a promising tool for CRC prognosis and immunotherapy, with future validation studies planned to guide personalized treatment strategies.
结直肠癌(CRC)的全球发病率持续上升,仍然是癌症相关死亡的主要原因。免疫原性细胞死亡(ICD)已成为肿瘤微环境(TME)动态变化的关键调节因子;然而,其在CRC中的预后意义和治疗潜力需要系统的表征。通过对单细胞RNA测序和批量转录组数据的综合分析,在CRC中鉴定出11个具有预后意义的ICD相关基因。然后采用一个综合的计算框架来评估101种机器学习组合,最终通过整合StepCox[向前]和随机生存森林(RSF)构建了一个优化的11基因ICD相关特征(ICDRS)。ICDRS在训练和验证数据集中对CRC患者的总生存期表现出强大的预测性能。值得注意的是,基于ICDRS的列线图在1至3年生存预测中实现了出色的时间依赖性曲线下面积(AUCs)(>0.90)。多维度分析揭示了ICDRS衍生的风险评分与不同的免疫浸润模式、免疫治疗反应和TME特征之间的显著关联。此外,还发现并鉴定了一种新的巨噬细胞亚型SPP1/SLC11A1,其具有高浸润水平。药物再利用分析表明奥拉帕尼是高危CRC患者的潜在治疗候选药物。因此,本研究将ICDRS确立为CRC预后和免疫治疗的一个有前景的工具,计划开展未来的验证研究以指导个性化治疗策略。