Hayes Samuel, Cawkwell Fiona, Bacon Karen L, Wingler Astrid
School of Biological, Earth and Environmental Sciences University College Cork Cork Ireland.
Sustainability Institute University College Cork Cork Ireland.
Ecol Evol. 2025 Jul 28;15(8):e71829. doi: 10.1002/ece3.71829. eCollection 2025 Aug.
The use of remotely sensed imagery for the monitoring of both plant biodiversity and functional traits in grassland ecosystems has increased substantially in the last few decades. More recently, uncrewed aerial vehicles (UAVs) have begun to play an increasingly important role, providing repeatable very high-resolution data, acting as a bridge between the decameter satellite imagery and the point scale data collected on the ground. At the same time, machine learning approaches are rapidly expanding, adding new analysis and modeling tools to the plethora of UAV, aircraft, and satellite observational data. Here, we provide a review of remotely sensed monitoring methods for grassland plant biodiversity and functional traits (Leaf Dry Matter Content, Crude Protein, Potassium, Phosphorus, Nitrogen and Leaf Area Index) between 2018 and 2024. We highlight the key innovations that have occurred, sources of error identified, new analysis methods presented, and identify the bottlenecks to and opportunities for further development. We emphasize the need for (1) the integration of observations across spatial and temporal scales, (2) a more systematic identification and examination of sources of error and uncertainty, (3) more widespread use of hyperspectral satellite data, and (4) greater focus on the development of a grassland global spectra database-linking spectra, species diversity metrics, and functional traits.
在过去几十年中,利用遥感影像监测草原生态系统中的植物生物多样性和功能性状的情况大幅增加。最近,无人驾驶飞行器(UAV)开始发挥越来越重要的作用,提供可重复的超高分辨率数据,成为十米级卫星影像与地面收集的点尺度数据之间的桥梁。与此同时,机器学习方法正在迅速扩展,为大量的无人机、飞机和卫星观测数据增添了新的分析和建模工具。在此,我们对2018年至2024年间草原植物生物多样性和功能性状(叶片干物质含量、粗蛋白、钾、磷、氮和叶面积指数)的遥感监测方法进行了综述。我们突出了已出现的关键创新、已识别的误差来源、已提出的新分析方法,并确定了进一步发展的瓶颈和机遇。我们强调需要(1)跨空间和时间尺度整合观测数据,(2)更系统地识别和检查误差和不确定性来源,(3)更广泛地使用高光谱卫星数据,以及(4)更专注于开发连接光谱、物种多样性指标和功能性状的草原全球光谱数据库。