Suppr超能文献

基于绝缘石墨烯和氮化硼复合材料的可拉伸散热片:用于在反复拉伸应变下实现稳定热导率的不对称弹性体网络。

Stretchable heat-dissipation sheet based on insulating graphene and boron nitride composites: asymmetric elastomeric networks for stable thermal conductivity under repeated tensile strain.

作者信息

Jeong Sang-Mi, Lim Taekyung, Yang Jonguk, Seo Hee Sung, Ju Sanghyun

机构信息

Major in Nano·Semiconductor, School of Electronic Engineering, Kyonggi University Suwon Gyeonggi-do 16227 Republic of Korea

出版信息

Nanoscale Adv. 2025 Jul 29. doi: 10.1039/d5na00373c.

Abstract

As modern electronic devices become smaller and more highly integrated, stable thermal management is emerging as a key development approach, including in applications considering mechanical deformation. In this study, a flexible heat-dissipating sheet was developed using composites of insulating graphene (I-Gr), plate-like boron nitride (BN-P), and aggregated spherical BN (BN-A) based on a high-elasticity styrene-(ethylene-butylene)-styrene (SEBS) elastomer. The unique asymmetric two-dimensional layered structure of I-Gr and BN improved the heat transfer properties of the composite by maintaining the continuity of the heat-conducting network despite tensile deformation. In addition, the spherical shape and disordered structure of the aggregated BN-A promoted the formation of an extended heat-conducting path and enhanced the bonding between the fillers. At the optimal composition, the composite maintained an initial thermal conductivity (TC) of 2.0 W m K or higher, and the TC reduction (ΔTC) was less than 8% and 10% at 50% and 100% elongation, respectively, demonstrating excellent TC stability. In addition, owing to the interfacial affinity and network reinforcing effect of I-Gr, the TC performance and structural stability were maintained even after 500 cycles of 50% tensile strain and 400% elongation. In contrast, the CNT-based composite showed limitations such as low initial TC, large ΔTC, and low elongation. This study presents a design strategy for a heat-dissipating material with high elasticity, high TC, and excellent durability, offering considerable potential for use in next-generation flexible electronic devices such as wearable electronics, freeform displays, and soft robotics.

摘要

随着现代电子设备变得越来越小且集成度越来越高,稳定的热管理正成为一种关键的发展方法,在考虑机械变形的应用中亦是如此。在本研究中,基于高弹性苯乙烯-(乙烯-丁烯)-苯乙烯(SEBS)弹性体制备了一种由绝缘石墨烯(I-Gr)、片状氮化硼(BN-P)和团聚球形氮化硼(BN-A)组成的柔性散热片。I-Gr和BN独特的不对称二维层状结构通过在拉伸变形时保持导热网络的连续性,改善了复合材料的传热性能。此外,团聚BN-A的球形形状和无序结构促进了扩展导热路径的形成,并增强了填料之间的结合。在最佳组成下,该复合材料保持初始热导率(TC)为2.0 W m⁻¹ K⁻¹或更高,在50%和100%伸长率下,TC降低(ΔTC)分别小于8%和10%,表现出优异的TC稳定性。此外,由于I-Gr的界面亲和力和网络增强效应,即使在50%拉伸应变和400%伸长率的500次循环后,仍能保持TC性能和结构稳定性。相比之下,基于碳纳米管的复合材料表现出诸如初始TC低、ΔTC大以及伸长率低等局限性。本研究提出了一种具有高弹性、高TC和优异耐久性的散热材料的设计策略,在可穿戴电子设备、自由形式显示器和软机器人等下一代柔性电子设备中具有巨大的应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec3/12422238/4cee0519438a/d5na00373c-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验