Suppr超能文献

开发一种用于急性缺血性中风的可解释性预后模型:将临床和炎症生物标志物与机器学习相结合。

Developing an Explainable Prognostic Model for Acute Ischemic Stroke: Combining Clinical and Inflammatory Biomarkers With Machine Learning.

作者信息

Ma Linlin, Ji Lang, Cheng Zhe, Geng Xiaokun, Ding Yuchuan

机构信息

Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China.

Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China.

出版信息

Brain Behav. 2025 Aug;15(8):e70673. doi: 10.1002/brb3.70673.

Abstract

BACKGROUND

Predicting the prognosis of patients with acute cerebral infarction (ACI) is crucial for clinical decision-making and personalized treatment. However, existing models often lack the comprehensive integration of clinical and biological indicators necessary for accurate and interpretable predictions. This study aims to develop and validate a predictive model using a combination of clinical assessments and inflammatory biomarkers to improve the prognostication of ACI patients.

METHODS

This real-world, retrospective cohort study was conducted at Luhe Hospital, Beijing, and included 1,017 ACI patients admitted within 24 h of symptom onset. The dataset was randomly split into a training set (80%) and a validation set (20%). Twelve machine learning models were developed and evaluated, with the optimal model and feature set selected based on comprehensive performance metrics. To enhance interpretability, the Shapley Additive exPlanations (SHAP) method was employed to quantify and visualize the contribution of each feature to the model's predictions.

RESULTS

The final model, utilizing the Logistic Regression (LR) algorithm, incorporated six key features: NIHSS at 24 h (NIHSS_24 h), NIHSS_change, D-dimer, neutrophil count (N), lymphocyte percentage at 24 h (L_pct_24 h), and length of stay (LOS). NIHSS_24 h emerged as a critical early prognostic indicator, effectively predicting three-month outcomes post-discharge. Inflammatory markers, including D-dimer, N, and L_pct_24 h, significantly enhanced the model's predictive performance. The SHAP method provided both global and local interpretability, elucidating the relative importance of each feature in the model's predictions. To facilitate clinical decision-making, a web-based application was developed for real-time prognostic assessment.

CONCLUSION

This study developed a robust and interpretable predictive model for ACI prognosis by integrating clinical and inflammatory biomarkers. The model underscores the prognostic significance of NIHSS_24 h and inflammatory markers, highlighting the critical role of early assessment and personalized treatment strategies. Future research should focus on multi-center validation and the incorporation of additional predictive variables to further enhance the model's accuracy and generalizability.

摘要

背景

预测急性脑梗死(ACI)患者的预后对于临床决策和个性化治疗至关重要。然而,现有模型往往缺乏准确且可解释的预测所需的临床和生物学指标的全面整合。本研究旨在开发并验证一种结合临床评估和炎症生物标志物的预测模型,以改善ACI患者的预后评估。

方法

本项真实世界的回顾性队列研究在北京潞河医院进行,纳入了1017例在症状发作后24小时内入院的ACI患者。数据集被随机分为训练集(80%)和验证集(20%)。开发并评估了12种机器学习模型,基于综合性能指标选择最佳模型和特征集。为提高可解释性,采用Shapley值加法解释(SHAP)方法来量化和可视化每个特征对模型预测的贡献。

结果

最终模型采用逻辑回归(LR)算法,纳入了六个关键特征:24小时美国国立卫生研究院卒中量表(NIHSS)评分(NIHSS_24h)、NIHSS变化值、D-二聚体、中性粒细胞计数(N)、24小时淋巴细胞百分比(L_pct_24h)和住院时间(LOS)。NIHSS_24h是关键的早期预后指标,能有效预测出院后三个月的结局。包括D-二聚体、N和L_pct_24h在内的炎症标志物显著提高了模型的预测性能。SHAP方法提供了全局和局部可解释性,阐明了每个特征在模型预测中的相对重要性。为便于临床决策,开发了一个基于网络的应用程序用于实时预后评估。

结论

本研究通过整合临床和炎症生物标志物,开发了一种用于ACI预后的强大且可解释的预测模型。该模型强调了NIHSS_24h和炎症标志物的预后意义,突出了早期评估和个性化治疗策略的关键作用。未来的研究应聚焦于多中心验证以及纳入更多预测变量,以进一步提高模型的准确性和通用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验