Suppr超能文献

预测中风发生:具有特征选择和数据预处理的堆叠机器学习方法。

Predicting stroke occurrences: a stacked machine learning approach with feature selection and data preprocessing.

机构信息

School of computer engineering, KIIT University, Patia, Bhubaneswar, Odisha, 751024, India.

Department of Environmental Health, Harvard T H Chan School of public Health, 677 Harrington Avenue, Boston, MA, 02115, USA.

出版信息

BMC Bioinformatics. 2024 Oct 15;25(1):329. doi: 10.1186/s12859-024-05866-8.

Abstract

Stroke prediction remains a critical area of research in healthcare, aiming to enhance early intervention and patient care strategies. This study investigates the efficacy of machine learning techniques, particularly principal component analysis (PCA) and a stacking ensemble method, for predicting stroke occurrences based on demographic, clinical, and lifestyle factors. We systematically varied PCA components and implemented a stacking model comprising random forest, decision tree, and K-nearest neighbors (KNN).Our findings demonstrate that setting PCA components to 16 optimally enhanced predictive accuracy, achieving a remarkable 98.6% accuracy in stroke prediction. Evaluation metrics underscored the robustness of our approach in handling class imbalance and improving model performance, also comparative analyses against traditional machine learning algorithms such as SVM, logistic regression, and Naive Bayes highlighted the superiority of our proposed method.

摘要

中风预测仍然是医疗保健领域的一个关键研究领域,旨在加强早期干预和患者护理策略。本研究调查了机器学习技术,特别是主成分分析(PCA)和堆叠集成方法,基于人口统计学、临床和生活方式因素预测中风发生的效果。我们系统地改变了 PCA 成分,并实施了一个堆叠模型,其中包括随机森林、决策树和 K-最近邻(KNN)。我们的研究结果表明,将 PCA 成分设置为 16 可以最佳地提高预测准确性,中风预测的准确性达到了惊人的 98.6%。评估指标强调了我们的方法在处理类别不平衡和提高模型性能方面的稳健性,与传统机器学习算法(如 SVM、逻辑回归和朴素贝叶斯)的比较分析也突出了我们提出的方法的优越性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cba/11476080/96466e0ff8ba/12859_2024_5866_Fig1_HTML.jpg

相似文献

1
2
Machine learning algorithms for predicting COVID-19 mortality in Ethiopia.
BMC Public Health. 2024 Jun 28;24(1):1728. doi: 10.1186/s12889-024-19196-0.
4
Precision healthcare: A deep dive into machine learning algorithms and feature selection strategies for accurate heart disease prediction.
Comput Biol Med. 2024 Jun;176:108432. doi: 10.1016/j.compbiomed.2024.108432. Epub 2024 May 10.
6
Prediction and feature selection of low birth weight using machine learning algorithms.
J Health Popul Nutr. 2024 Oct 12;43(1):157. doi: 10.1186/s41043-024-00647-8.
8
Decision tree-based learning to predict patient controlled analgesia consumption and readjustment.
BMC Med Inform Decis Mak. 2012 Nov 14;12:131. doi: 10.1186/1472-6947-12-131.

引用本文的文献

本文引用的文献

2
Deep learning-based personalised outcome prediction after acute ischaemic stroke.
J Neurol Neurosurg Psychiatry. 2023 May;94(5):369-378. doi: 10.1136/jnnp-2022-330230. Epub 2023 Jan 17.
3
Stroke Risk Prediction with Machine Learning Techniques.
Sensors (Basel). 2022 Jun 21;22(13):4670. doi: 10.3390/s22134670.
6
Predicting the Internal Knee Abduction Impulse During Walking Using Deep Learning.
Front Bioeng Biotechnol. 2022 May 12;10:877347. doi: 10.3389/fbioe.2022.877347. eCollection 2022.
8
A comprehensive evaluation of state-of-the-art time-series deep learning models for activity-recognition in post-stroke rehabilitation assessment.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:2242-2247. doi: 10.1109/EMBC46164.2021.9630462.
9
Stroke risk prediction using machine learning: a prospective cohort study of 0.5 million Chinese adults.
J Am Med Inform Assoc. 2021 Jul 30;28(8):1719-1727. doi: 10.1093/jamia/ocab068.
10
Prediction of Long-Term Stroke Recurrence Using Machine Learning Models.
J Clin Med. 2021 Mar 20;10(6):1286. doi: 10.3390/jcm10061286.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验