Du Yimei, Li Yan, Li Yanzhang, Jin Song, Ye Huan, Hou Bingxu, Hua Tianci, Zhu Jiaqi, Lu Houze, Lu Anhuai, Li Tao
SKLab-DeepMinE, MOEKLab-OBCE, School of Earth and Space Sciences, Peking University, Beijing, China.
Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing, China.
Appl Environ Microbiol. 2025 Jul 31:e0013825. doi: 10.1128/aem.00138-25.
The key limiting factors on energy conversion efficiency in semiconductor-microbe hybrid systems remain inadequately understood. This study investigates the impact of ultrafast electron transfer kinetics at CdZnS/ MR-1 interfaces on the overall efficiency of hybrid systems. The reduction efficiency of direct blue 71 dye by CdZnS/MR-1 is significantly enhanced under light, leveraging the synergy of extracellular photoelectron transfer in various CdZnS nanoparticles and associated redox pathways in MR-1. Notably, CdS/MR-1 achieved a 98% reduction compared to 31% for ZnS/MR-1 after 1 hour, despite ZnS exhibiting a more favorable conduction band potential of -1.37 V vs normal hydrogen electrode (NHE). Time-resolved spectra and density functional theory calculations reveal that the efficiency advantages of CdS/MR-1 are attributed to its longer photoelectron lifetime (1.14 ± 0.12 ps vs 0.18 ± 0.03 ps for ZnS/MR-1) and higher electron mobility (119.71 cm²/V·s for CdS/MR-1 vs 62.47 cm²/V·s for ZnS/MR-1), providing MR-1 with superior kinetic advantages in utilizing photoelectron energy. Additionally, experiments with exogenous cytochrome demonstrate its crucial role in modulating extracellular and intracellular electron transfer kinetics at the CdZnS/MR-1 interface. Transcriptomic analysis reveals similar photoelectron transfer pathways in CdS/MR-1 and ZnS/MR-1, supporting that CdS/MR-1's superior efficiency stems from kinetic advantages at the interface, leading to greater bioavailable photoelectron accumulation. These findings underscore the importance of optimizing photoelectron transfer kinetics to enhance extracellular photoelectron utilization efficiency in semiconductor-microbe hybrid systems.IMPORTANCEThe synergy of light-sensitive semiconductor elements (e.g., natural minerals) and microbes in natural matrices enhances biological functions and opens a wide range of biotechnological possibilities. Given the extremely short lifetimes of photoelectrons and rapid transfer rates at semiconductor-microbe interface, understanding this ultrafast electron transfer process is essential for elucidating the mechanism of extracellular photoelectron utilization and optimizing system efficiency. Our study demonstrates that MR-1 can benefit from photoelectrons through ultrafast electron transfer pathways, similar to photosynthetic systems. For microbes to efficiently utilize these photoelectrons before charge recombination on an ultrafast timescale, a prolonged photoelectron lifetime is kinetically advantageous. Our findings indicate that the superior efficiency of the CdS/MR-1 hybrid system is driven by kinetic advantages rather than thermodynamic factors. This foundational study is crucial for optimizing the energetics of semiconductor-microbe hybrid systems and expands our understanding of microbial energy metabolism.
半导体 - 微生物混合系统中能量转换效率的关键限制因素仍未得到充分理解。本研究调查了CdZnS/MR - 1界面处超快电子转移动力学对混合系统整体效率的影响。在光照下,CdZnS/MR - 1对直接蓝71染料的还原效率显著提高,这得益于各种CdZnS纳米颗粒中细胞外光电子转移与MR - 1中相关氧化还原途径的协同作用。值得注意的是,1小时后,CdS/MR - 1实现了98%的还原,而ZnS/MR - 1为31%,尽管ZnS相对于标准氢电极(NHE)表现出更有利的导带电位 - 1.37V。时间分辨光谱和密度泛函理论计算表明,CdS/MR - 1的效率优势归因于其更长的光电子寿命(1.14±0.12 ps,而ZnS/MR - 1为0.18±0.03 ps)和更高的电子迁移率(CdS/MR - 1为119.71 cm²/V·s,ZnS/MR - 1为62.47 cm²/V·s),这为MR - 1在利用光电子能量方面提供了卓越的动力学优势。此外,外源细胞色素的实验证明了其在调节CdZnS/MR - 1界面处细胞外和细胞内电子转移动力学中的关键作用。转录组分析揭示了CdS/MR - 1和ZnS/MR - 1中相似的光电子转移途径,支持CdS/MR - 1的卓越效率源于界面处的动力学优势,导致更多生物可利用光电子的积累。这些发现强调了优化光电子转移动力学以提高半导体 - 微生物混合系统中细胞外光电子利用效率的重要性。
重要性
天然基质中光敏半导体元素(如天然矿物质)与微生物的协同作用增强了生物学功能,并开启了广泛的生物技术可能性。鉴于光电子寿命极短且在半导体 - 微生物界面处转移速率很快,理解这种超快电子转移过程对于阐明细胞外光电子利用机制和优化系统效率至关重要。我们的研究表明,MR - 1可以通过超快电子转移途径从光电子中受益,类似于光合系统。为了使微生物在超快时间尺度上电荷复合之前有效利用这些光电子,延长光电子寿命在动力学上具有优势。我们的发现表明,CdS/MR - 1混合系统的卓越效率是由动力学优势而非热力学因素驱动的。这项基础研究对于优化半导体 - 微生物混合系统的能量学至关重要,并扩展了我们对微生物能量代谢的理解。