Baikie Tomi K, Wey Laura T, Lawrence Joshua M, Medipally Hitesh, Reisner Erwin, Nowaczyk Marc M, Friend Richard H, Howe Christopher J, Schnedermann Christoph, Rao Akshay, Zhang Jenny Z
Cavendish Laboratory, University of Cambridge, Cambridge, UK.
Department of Biochemistry, University of Cambridge, Cambridge, UK.
Nature. 2023 Mar;615(7954):836-840. doi: 10.1038/s41586-023-05763-9. Epub 2023 Mar 22.
Photosystems II and I (PSII, PSI) are the reaction centre-containing complexes driving the light reactions of photosynthesis; PSII performs light-driven water oxidation and PSI further photo-energizes harvested electrons. The impressive efficiencies of the photosystems have motivated extensive biological, artificial and biohybrid approaches to 're-wire' photosynthesis for higher biomass-conversion efficiencies and new reaction pathways, such as H evolution or CO fixation. Previous approaches focused on charge extraction at terminal electron acceptors of the photosystems. Electron extraction at earlier steps, perhaps immediately from photoexcited reaction centres, would enable greater thermodynamic gains; however, this was believed impossible with reaction centres buried at least 4 nm within the photosystems. Here, we demonstrate, using in vivo ultrafast transient absorption (TA) spectroscopy, extraction of electrons directly from photoexcited PSI and PSII at early points (several picoseconds post-photo-excitation) with live cyanobacterial cells or isolated photosystems, and exogenous electron mediators such as 2,6-dichloro-1,4-benzoquinone (DCBQ) and methyl viologen. We postulate that these mediators oxidize peripheral chlorophyll pigments participating in highly delocalized charge-transfer states after initial photo-excitation. Our results challenge previous models that the photoexcited reaction centres are insulated within the photosystem protein scaffold, opening new avenues to study and re-wire photosynthesis for biotechnologies and semi-artificial photosynthesis.
光系统II和I(PSII、PSI)是驱动光合作用光反应的含反应中心的复合物;PSII进行光驱动的水氧化,PSI进一步为捕获的电子提供光能量。光系统令人印象深刻的效率激发了广泛的生物学、人工和生物杂交方法来“重新连接”光合作用,以实现更高的生物质转化效率和新的反应途径,如氢气进化或二氧化碳固定。以前的方法侧重于在光系统的末端电子受体处进行电荷提取。在更早的步骤,也许直接从光激发的反应中心进行电子提取,将能获得更大的热力学收益;然而,人们认为这对于埋在光系统内至少4纳米深处的反应中心来说是不可能的。在这里,我们使用体内超快瞬态吸收(TA)光谱法证明,在活的蓝藻细胞或分离的光系统以及外源性电子介质(如2,6-二氯-1,4-苯醌(DCBQ)和甲基紫精)存在的情况下,能在早期阶段(光激发后几皮秒)直接从光激发的PSI和PSII中提取电子。我们推测,这些介质在初始光激发后会氧化参与高度离域电荷转移态的外周叶绿素色素。我们的结果挑战了以前认为光激发的反应中心在光系统蛋白质支架内是绝缘的模型,为研究和重新连接用于生物技术和半人工光合作用的光合作用开辟了新途径。