Suppr超能文献

生物膜受益者的存在会改变生物膜形成者的进化轨迹。

Presence of a biofilm beneficiary alters the evolutionary trajectory of a biofilm former.

作者信息

Sun Xinli, Xu Zhihui, Hu Guohai, Xie Jiyu, Li Yun, Tao Lili, Zhang Nan, Xun Weibing, Miao Youzhi, Zhang Ruifu, Shen Qirong, Kost Christian, Kovács Ákos T

机构信息

Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key lab of organic-based fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.

Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby 2800, Denmark.

出版信息

ISME J. 2025 Jan 2;19(1). doi: 10.1093/ismejo/wraf160.

Abstract

Biofilm evolution is typically studied in monocultures or in communities displaying mutualistic or exploitative interactions. However, in communities with fluctuating interactions, the influence of biofilm-beneficiary bacteria on the evolution of biofilm-founder bacteria remains less understood. Biofilm-beneficiary bacteria cannot form robust biofilms independently but can incorporate into the biofilm of biofilm-formers, thereby gaining the ability to colonize given niche. In this study, we demonstrate that the biofilm-former Bacillus velezensis SQR9 reproducibly diversified into biofilm-enhanced slimy and biofilm-weakened rough types, both in the presence and absence of a biofilm-beneficiary Stutzerimonas degradans XL272 (formerly Pseudomonas stutzeri), but with variable frequencies under the two conditions. The exopolysaccharide producer slimy types dominated B. velezensis populations in monoevolution, whereas the exploiter rough types, which exploit the exopolysaccharides produced by the slimy types, dominate in coculture evolution. Phenotypic changes in B. velezensis were linked to mutations in specific genes that regulate biofilm formation and sporulation, including ywcC, comA, comP, degS, degQ, and spo0F. A frameshift mutation in the cpsA gene of S. degradans increased its exopolysaccharide production in the dual-species biofilm, which served as shared resources and allow the B. velezensis exploiter (i.e. rough type) to outcompete the producer (i.e. slimy type) during coculture evolution. Additionally, longitudinal population sequencing and "replay" evolution experiments with the S. degradans mutant revealed that the cpsA mutation accelerated the fixation of the rough type within B. velezensis populations. In conclusion, this research demonstrates that interspecific interactions can adaptively favor exploiters within biofilm populations.

摘要

生物膜进化通常在单一培养物中或在显示互利或剥削性相互作用的群落中进行研究。然而,在具有波动相互作用的群落中,生物膜受益细菌对生物膜形成细菌进化的影响仍知之甚少。生物膜受益细菌不能独立形成强大的生物膜,但可以融入生物膜形成菌的生物膜中,从而获得在特定生态位定殖的能力。在本研究中,我们证明,无论是否存在生物膜受益菌施氏假单胞菌XL272(以前称为施氏假单胞菌),生物膜形成菌贝莱斯芽孢杆菌SQR9都可重复性地分化为生物膜增强的黏液型和生物膜减弱的粗糙型,但在两种条件下频率不同。在单种进化中,胞外多糖产生菌黏液型在贝莱斯芽孢杆菌群体中占主导地位,而利用黏液型产生的胞外多糖的剥削型粗糙型在共培养进化中占主导地位。贝莱斯芽孢杆菌的表型变化与调节生物膜形成和芽孢形成的特定基因的突变有关,包括ywcC、comA、comP、degS、degQ和spo0F。施氏假单胞菌的cpsA基因发生移码突变,增加了其在双物种生物膜中的胞外多糖产量,这些胞外多糖作为共享资源,使贝莱斯芽孢杆菌剥削型(即粗糙型)在共培养进化过程中能够胜过生产者型(即黏液型)。此外,对施氏假单胞菌突变体进行的纵向群体测序和“重演”进化实验表明,cpsA突变加速了粗糙型在贝莱斯芽孢杆菌群体中的固定。总之,本研究表明种间相互作用可以适应性地有利于生物膜群体中的剥削者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afae/12393148/cf2c6acc638d/wraf160f1.jpg

相似文献

2
Auto-aggregation in is driven by the Pel polysaccharide.
mBio. 2025 Jul 7:e0119625. doi: 10.1128/mbio.01196-25.
3
Non-disruptive matrix turnover is a conserved feature of biofilm aggregate growth in paradigm pathogenic species.
mBio. 2025 Mar 12;16(3):e0393524. doi: 10.1128/mbio.03935-24. Epub 2025 Feb 21.
5
Genomic and phenotypic insights into Serratia interaction with plants from an ecological perspective.
Braz J Microbiol. 2025 Jun;56(2):1219-1239. doi: 10.1007/s42770-025-01652-7. Epub 2025 Mar 25.
6
A biofilm-tropic bacteriophage uses the exopolysaccharide Psl as receptor.
Elife. 2025 Aug 11;13:RP102352. doi: 10.7554/eLife.102352.
9
Acid-resistant effectively controls pathogenic and improves plant health through metabolic interactions.
Appl Environ Microbiol. 2025 Jun 23:e0034025. doi: 10.1128/aem.00340-25.
10
A single point mutation is sufficient to drive -dependent biofilm formation and promote colonization by .
J Bacteriol. 2025 Aug 21;207(8):e0013125. doi: 10.1128/jb.00131-25. Epub 2025 Jul 14.

本文引用的文献

1
Microbial diversification is maintained in an experimentally evolved synthetic community.
mSystems. 2024 Nov 19;9(11):e0105324. doi: 10.1128/msystems.01053-24. Epub 2024 Oct 15.
2
Microbial extracellular polymeric substances in the environment, technology and medicine.
Nat Rev Microbiol. 2025 Feb;23(2):87-105. doi: 10.1038/s41579-024-01098-y. Epub 2024 Sep 27.
3
Enhanced surface colonisation and competition during bacterial adaptation to a fungus.
Nat Commun. 2024 May 27;15(1):4486. doi: 10.1038/s41467-024-48812-1.
4
Adaptive laboratory evolution reveals regulators involved in repressing biofilm development as key players in root colonization.
mSystems. 2024 Feb 20;9(2):e0084323. doi: 10.1128/msystems.00843-23. Epub 2024 Jan 11.
5
Colony morphotype diversification as a signature of bacterial evolution.
Microlife. 2023 Oct 10;4:uqad041. doi: 10.1093/femsml/uqad041. eCollection 2023.
6
Emergence of novel non-aggregative variants under negative frequency-dependent selection in .
Microlife. 2023 Sep 12;4:uqad038. doi: 10.1093/femsml/uqad038. eCollection 2023.
7
Diversification during cross-kingdom microbial experimental evolution.
ISME J. 2023 Sep;17(9):1355-1357. doi: 10.1038/s41396-023-01479-w. Epub 2023 Jul 31.
9
Parallel genetic adaptation of to different plant species.
Microb Genom. 2023 Jul;9(7). doi: 10.1099/mgen.0.001064.
10
The biofilm matrix: multitasking in a shared space.
Nat Rev Microbiol. 2023 Feb;21(2):70-86. doi: 10.1038/s41579-022-00791-0. Epub 2022 Sep 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验