Suppr超能文献

微生物多样化在一个经过实验进化的合成群落中得以维持。

Microbial diversification is maintained in an experimentally evolved synthetic community.

机构信息

Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, California, USA.

出版信息

mSystems. 2024 Nov 19;9(11):e0105324. doi: 10.1128/msystems.01053-24. Epub 2024 Oct 15.

Abstract

UNLABELLED

Microbial communities are incredibly diverse. Yet, the eco-evolutionary processes originating and maintaining this diversity remain understudied. Here, we investigate the patterns of diversification for evolving in isolation and with leaking resources used by . We experimentally evolved four experimental replicates in monoculture and co-culture for 200 generations. We observed that diversified into two distinct morphotypes that differed from their ancestor by single-point mutations. One of the most prominent mutations hit the gene encoding the master regulator of flagella and biofilm formation. We experimentally confirmed that mutants were unable to swim and formed less biofilm than their ancestor, but they also produced higher yields. Interestingly, the genotype and other mutations swept to fixation in monocultures but not in co-cultures. In co-cultures, the two lineages stably coexisted for approximately 150 generations. We hypothesized that modulates the coexistence of the two lineages through frequency-dependent selection. However, invasion experiments with two genotypes in monoculture and co-culture did not support this hypothesis. Finally, we conducted an evolutionary "replay" experiment to assess whether the presence or absence of influenced the coexistence of morphotypes at the population level. Interestingly, had a stabilizing effect on the co-culture. Overall, our study suggests that interspecies interactions play an important role in shaping patterns of diversification in microbial communities.

IMPORTANCE

In nature, bacteria live in microbial communities and interact with other species, for example, through the exchange of resources leaked into the external environment (i.e., cross-feeding interactions). The role that these cross-feeding interactions play in shaping patterns of diversification remains understudied. Using a simple bacterial system in which one species cross-feeds resources to a second species (commensal species), we showed that the commensal species diversified into two subpopulations that persisted only when the cross-feeder partner was present. We further observed loss-of-function mutations in flagellar genes that were fixed in monocultures but not in co-cultures. Our findings suggest that cross-feeding species influence patterns of diversification of other species. Given that nutrient leakage is pervasive in microbial communities, the findings from this study have the potential to extend beyond our specific bacterial system. Importantly, our study has contributed to answering the larger question of whether species evolved differently in isolation versus when interacting with other species.

摘要

未加标签

微生物群落的多样性令人难以置信。然而,起源和维持这种多样性的生态进化过程仍有待研究。在这里,我们研究了 在隔离和与 泄漏资源的共培养中进化的多样化模式。我们在 200 代的时间里,在纯培养和共培养中分别对四个实验重复进行了实验进化。我们观察到, 分化成两种与祖先不同的形态,其差异来自单点突变。最显著的突变之一发生在 基因上,该基因编码鞭毛和生物膜形成的主调控因子。我们通过实验证实, 突变体不能游动,并且形成的生物膜比其祖先少,但产量更高。有趣的是, 基因型和其他突变在纯培养中固定下来,但在共培养中没有。在共培养中,这两个谱系稳定共存了大约 150 代。我们假设 通过频率依赖选择调节两个谱系的共存。然而,在单培养和共培养中用两种基因型进行的入侵实验并不支持这一假设。最后,我们进行了一个进化“重演”实验,以评估 的存在或缺失是否会影响种群水平上形态的共存。有趣的是, 在共培养中具有稳定作用。总的来说,我们的研究表明,种间相互作用在塑造微生物群落的多样化模式方面起着重要作用。

意义

在自然界中,细菌生活在微生物群落中,并与其他物种相互作用,例如,通过将资源泄漏到外部环境中(即交叉喂养相互作用)进行资源交换。这些交叉喂养相互作用在塑造多样化模式中的作用仍有待研究。我们使用一个简单的细菌系统,其中一个物种将资源交叉喂养给第二个物种(共生物种),我们表明,共生物种分化成两个亚群,只有当交叉喂养伙伴存在时,这些亚群才能持续存在。我们还观察到,在单培养中固定的,但在共培养中不固定的,与鞭毛基因相关的功能丧失突变。我们的发现表明,交叉喂养物种会影响其他物种的多样化模式。鉴于营养泄漏在微生物群落中普遍存在,本研究的结果有可能超越我们特定的细菌系统。重要的是,我们的研究有助于回答一个更大的问题,即在与其他物种相互作用时,物种的进化是否与在隔离状态下不同。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c75/11575400/ccedfa615b76/msystems.01053-24.f001.jpg

相似文献

1
Microbial diversification is maintained in an experimentally evolved synthetic community.
mSystems. 2024 Nov 19;9(11):e0105324. doi: 10.1128/msystems.01053-24. Epub 2024 Oct 15.
2
Characterization of a Pseudomonas putida rough variant evolved in a mixed-species biofilm with Acinetobacter sp. strain C6.
J Bacteriol. 2007 Jul;189(13):4932-43. doi: 10.1128/JB.00041-07. Epub 2007 Apr 27.
4
Metabolic commensalism and competition in a two-species microbial consortium.
Appl Environ Microbiol. 2002 May;68(5):2495-502. doi: 10.1128/AEM.68.5.2495-2502.2002.
5
Emergence of a Synergistic Diversity as a Response to Competition in Pseudomonas putida Biofilms.
Microb Ecol. 2020 Jul;80(1):47-59. doi: 10.1007/s00248-019-01470-z. Epub 2019 Dec 16.
6
Biofilm formation-defective mutants in Pseudomonas putida.
FEMS Microbiol Lett. 2016 Jul;363(13). doi: 10.1093/femsle/fnw127. Epub 2016 May 11.

引用本文的文献

本文引用的文献

1
The evolution of reduced facilitation in a four-species bacterial community.
Evol Lett. 2024 Jul 19;8(6):828-840. doi: 10.1093/evlett/qrae036. eCollection 2024 Dec.
2
Two-component system GacS/GacA, a global response regulator of bacterial physiological behaviors.
Eng Microbiol. 2022 Oct 5;3(1):100051. doi: 10.1016/j.engmic.2022.100051. eCollection 2023 Mar.
3
Impact of direct physical association and motility on fitness of a synthetic interkingdom microbial community.
ISME J. 2023 Mar;17(3):371-381. doi: 10.1038/s41396-022-01352-2. Epub 2022 Dec 24.
4
Species interactions constrain adaptation and preserve ecological stability in an experimental microbial community.
ISME J. 2022 May;16(5):1442-1452. doi: 10.1038/s41396-022-01191-1. Epub 2022 Jan 22.
5
Experimental evolution of Pseudomonas putida under silver ion versus nanoparticle stress.
Environ Microbiol. 2022 Feb;24(2):905-918. doi: 10.1111/1462-2920.15854. Epub 2021 Dec 13.
6
Evolving Interactions and Emergent Functions in Microbial Consortia.
mSystems. 2021 Aug 31;6(4):e0077421. doi: 10.1128/mSystems.00774-21. Epub 2021 Aug 24.
7
Negative Frequency-Dependent Selection Is Frequently Confounding.
Front Ecol Evol. 2018 Feb;6. doi: 10.3389/fevo.2018.00010. Epub 2018 Feb 21.
8
Rapid evolution destabilizes species interactions in a fluctuating environment.
ISME J. 2021 Feb;15(2):450-460. doi: 10.1038/s41396-020-00787-9. Epub 2020 Oct 6.
9
Adaptive laboratory evolution of KT2440 improves -coumaric and ferulic acid catabolism and tolerance.
Metab Eng Commun. 2020 Aug 29;11:e00143. doi: 10.1016/j.mec.2020.e00143. eCollection 2020 Dec.
10
Omics-driven identification and elimination of valerolactam catabolism in KT2440 for increased product titer.
Metab Eng Commun. 2019 Aug 10;9:e00098. doi: 10.1016/j.mec.2019.e00098. eCollection 2019 Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验