Suppr超能文献

适应性实验室进化揭示了参与抑制生物膜形成的调控因子是根部定殖的关键因素。

Adaptive laboratory evolution reveals regulators involved in repressing biofilm development as key players in root colonization.

作者信息

Pomerleau Maude, Charron-Lamoureux Vincent, Léonard Lucille, Grenier Frédéric, Rodrigue Sébastien, Beauregard Pascale B

机构信息

Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.

Département de Génie Biologique, Université de Technologie de Compiègne, Compiègne, France.

出版信息

mSystems. 2024 Feb 20;9(2):e0084323. doi: 10.1128/msystems.00843-23. Epub 2024 Jan 11.

Abstract

Root-associated microorganisms play an important role in plant health, such as plant growth-promoting rhizobacteria (PGPR) from the and genera. Although bacterial consortia including these two genera would represent a promising avenue to efficient biofertilizer formulation, we observed that root colonization is decreased by the presence of and . To determine if can adapt to the inhibitory effect of on roots, we conducted adaptative laboratory evolution experiments with in mono-association or co-cultured with on tomato plant roots. Evolved isolates with various colony morphology and stronger colonization capacity of both tomato plant and roots emerged rapidly from the two evolution experiments. Certain evolved isolates also had better fitness on the root in the presence of other species. In all independent lineages, whole-genome resequencing revealed non-synonymous mutations in genes or encoding regulators involved in repressing biofilm development, suggesting their involvement in enhanced root colonization. These findings provide insights into the molecular mechanisms underlying adaptation to root colonization and highlight the potential of directed evolution to enhance the beneficial traits of PGPR.IMPORTANCEIn this study, we aimed to enhance the abilities of the plant-beneficial bacterium to colonize plant roots in the presence of competing bacteria. To achieve this, we conducted adaptive laboratory experiments, allowing to evolve in a defined environment. We successfully obtained strains of that were more effective at colonizing plant roots than the ancestor strain. To identify the genetic changes driving this improvement, we sequenced the genomes of these evolved strains. Interestingly, mutations that facilitated the formation of robust biofilms on roots were predominant. Many of these evolved isolates also displayed the remarkable ability to outcompete species. Our research sheds light on the mutational paths selected in to thrive in root environments and offers exciting prospects for improving beneficial traits in plant growth-promoting microorganisms. Ultimately, this could pave the way for the development of more effective biofertilizers and sustainable agricultural practices.

摘要

与根相关的微生物在植物健康中发挥着重要作用,例如来自某属和某属的促植物生长根际细菌(PGPR)。尽管包含这两个属的细菌联合体可能是高效生物肥料配方的一个有前景的途径,但我们观察到某属的存在会降低另一属在根部的定殖。为了确定某属是否能适应另一属对根部的抑制作用,我们在番茄植株根部进行了某属的单菌落培养或与另一属共培养的适应性实验室进化实验。在这两个进化实验中,迅速出现了具有各种菌落形态且对番茄植株和某属根部定殖能力更强的进化分离株。某些进化分离株在存在其他某属物种的情况下在根部也具有更好的适应性。在所有独立谱系中,全基因组重测序揭示了参与抑制生物膜形成的基因或编码调节因子的非同义突变,表明它们参与了增强的根部定殖。这些发现为某属适应根部定殖的分子机制提供了见解,并突出了定向进化增强PGPR有益特性的潜力。

重要性

在本研究中,我们旨在提高有益植物细菌某属在存在竞争性另一属细菌的情况下在植物根部定殖的能力。为实现这一目标,我们进行了适应性实验室实验,使某属在特定环境中进化。我们成功获得了比祖先菌株在植物根部定殖更有效的某属菌株。为了确定推动这种改善的基因变化,我们对这些进化菌株的基因组进行了测序。有趣的是,促进在根部形成强大生物膜的突变占主导地位。许多这些进化的某属分离株还表现出显著的能力,能够胜过另一属物种。我们的研究揭示了某属在根部环境中茁壮成长所选择的突变路径,并为改善促进植物生长微生物的有益特性提供了令人兴奋的前景。最终,这可能为开发更有效的生物肥料和可持续农业实践铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0806/10878085/add3d9a5af95/msystems.00843-23.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验