Suppr超能文献

用于骨组织工程的细菌纳米纤维素-壳聚糖-明胶-羟基磷灰石支架

Bacterial Nanocellulose-Chitosan-Gelatin-Hydroxyapatite Scaffolds for Bone Tissue Engineering.

作者信息

Phatchayawat Phasuwit P, Yodmuang Supansa, Phisalaphong Muenduen

机构信息

Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand.

Biomedical Materials and Devices for Revolutionary Integrative Systems Engineering Research Unit (BMD-RISE), Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand.

出版信息

Macromol Biosci. 2025 Jul 31:e00299. doi: 10.1002/mabi.202500299.

Abstract

Bacterial nanocellulose (BNC) is highly biocompatible and has excellent mechanical properties, but lacks bioactive properties. In this study, scaffolds of BNC composites with suitable physical and biological properties for bone tissue regeneration were successfully fabricated through a simple, facile, cost-effective, and scalable method via biosynthesis by Acetobacter xylinum in a culture medium supplemented with chitosan (CS), gelatin (GT), and hydroxyapatite (HAp). BNC-CS-GT-HAp scaffolds displayed a good 3D architecture of interconnected porous structures with fiber networks and improved surface roughness upon HAp incorporation, with pore diameters of 384.5-457.4 µm on the surface and 467.5-498.7 µm in the interior, along with porosity of 66.0%-81.4%. Adding HAp to scaffolds at 0.1% to 0.2% (w/v) improved scaffold properties, such as compressive strength (MPa), thermal stability, and antibacterial properties. BNC-CS-GT-HAp scaffolds were biomineralized in a simulated body fluid for 21 days, producing bone-like apatite with a Ca/P ratio of 1.65-1.69. The in vitro study of MC3T3-E1 cells showed that BNC-CS-GT-HAp scaffolds facilitated cell adsorption, adhesion, and proliferation. They also promoted alkaline phosphatase (ALP) activity and extracellular matrix (ECM) mineralization. On day 21, the cell-seeded scaffolds showed significantly improved compressive strength compared to cell-free scaffolds. The results of this study suggest that BNC-CS-GT-HAp scaffolds could enhance osteoconductivity, possess desirable properties for bone tissue engineering, and provide a promising platform for future translational and in vivo studies.

摘要

细菌纳米纤维素(BNC)具有高度的生物相容性和出色的机械性能,但缺乏生物活性。在本研究中,通过木醋杆菌在添加壳聚糖(CS)、明胶(GT)和羟基磷灰石(HAp)的培养基中进行生物合成,采用一种简单、便捷、经济高效且可扩展的方法,成功制备了具有适合骨组织再生的物理和生物学特性的BNC复合材料支架。BNC-CS-GT-HAp支架呈现出具有相互连接的多孔结构和纤维网络的良好三维结构,并且在掺入HAp后表面粗糙度得到改善,表面孔径为384.5 - 457.4 µm,内部孔径为467.5 - 498.7 µm,孔隙率为66.0% - 81.4%。以0.1%至0.2%(w/v)的比例向支架中添加HAp可改善支架性能,如抗压强度(MPa)、热稳定性和抗菌性能。BNC-CS-GT-HAp支架在模拟体液中进行生物矿化21天,生成钙磷比为1.65 - 1.69的类骨磷灰石。对MC3T3-E1细胞的体外研究表明,BNC-CS-GT-HAp支架促进细胞吸附、黏附和增殖。它们还促进碱性磷酸酶(ALP)活性和细胞外基质(ECM)矿化。在第21天,接种细胞的支架与无细胞支架相比,抗压强度显著提高。本研究结果表明,BNC-CS-GT-HAp支架可增强骨传导性,具有骨组织工程所需的特性,并为未来的转化研究和体内研究提供了一个有前景的平台。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验