Suppr超能文献

基于介电响应混合表示的电化学界面的机器学习潜力

Machine Learning Potential for Electrochemical Interfaces with Hybrid Representation of Dielectric Response.

作者信息

Zhu Jia-Xin, Cheng Jun

机构信息

Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen 361005, China.

Xiamen University, Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen 361005, China and Laboratory of AI for Electrochemistry (AI4EC), IKKEM, Xiamen 361005, China and Institute of Artificial Intelligence, Xiamen 361005, China.

出版信息

Phys Rev Lett. 2025 Jul 2;135(1):018003. doi: 10.1103/48ct-3jxm.

Abstract

Understanding electrochemical interfaces at a microscopic level is essential for elucidating important electrochemical processes in electrocatalysis, batteries, and corrosion. While ab initio simulations have provided valuable insights into model systems, the high computational cost limits their use in tackling complex systems of relevance to practical applications. Machine learning potentials offer a solution, but their application in electrochemistry remains challenging due to the difficulty in treating the dielectric response of electronic conductors and insulators simultaneously. In this Letter, we propose a hybrid framework of machine learning potentials that is capable of simulating metal-electrolyte interfaces by unifying the interfacial dielectric response accounting for local electronic polarization in electrolytes and nonlocal charge transfer in metal electrodes. We validate our method by reproducing the bell-shaped differential Helmholtz capacitance at the Pt(111)-electrolyte interface. Furthermore, we apply the machine learning potential to calculate the dielectric profile at the interface, providing new insights into electronic polarization effects. Our Letter lays the foundation for atomistic modeling of complex, realistic electrochemical interfaces using machine learning potential at ab initio accuracy.

摘要

在微观层面理解电化学界面对于阐明电催化、电池和腐蚀等重要电化学过程至关重要。虽然从头算模拟为模型系统提供了有价值的见解,但高计算成本限制了它们在处理与实际应用相关的复杂系统中的应用。机器学习势能提供了一种解决方案,但由于难以同时处理电子导体和绝缘体的介电响应,它们在电化学中的应用仍然具有挑战性。在本信函中,我们提出了一种机器学习势能的混合框架,该框架能够通过统一考虑电解质中局部电子极化和金属电极中非局部电荷转移的界面介电响应来模拟金属 - 电解质界面。我们通过重现Pt(111) - 电解质界面处的钟形微分亥姆霍兹电容来验证我们的方法。此外,我们应用机器学习势能来计算界面处的介电分布,为电子极化效应提供了新的见解。我们的信函为使用具有从头算精度的机器学习势能对复杂、实际的电化学界面进行原子尺度建模奠定了基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验