文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于基于主体的疟疾传播模型仿真与校准的多任务深度学习

Multitask deep learning for the emulation and calibration of an agent-based malaria transmission model.

作者信息

Mondal Agastya, Anirudh Rushil, Selvaraj Prashanth

机构信息

Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, California, United States of America.

Amazon, Palo Alto, California, United States of America.

出版信息

PLoS Comput Biol. 2025 Jul 31;21(7):e1013330. doi: 10.1371/journal.pcbi.1013330. eCollection 2025 Jul.


DOI:10.1371/journal.pcbi.1013330
PMID:40743314
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12327647/
Abstract

Agent-based models of malaria transmission are useful tools for understanding disease dynamics and planning interventions, but they can be computationally intensive to calibrate. We present a multitask deep learning approach for emulating and calibrating a complex agent-based model of malaria transmission. Our neural network emulator was trained on a large suite of simulations from the EMOD malaria model, an agent-based model of malaria transmission dynamics, capturing relationships between immunological parameters and epidemiological outcomes such as age-stratified incidence and prevalence across eight sub-Saharan African study sites. We then use the trained emulator in conjunction with parameter estimation techniques to calibrate the underlying model to reference data. Taken together, this analysis shows the potential of machine learning-guided emulator design for complex scientific processes and their comparison to field data.

摘要

基于主体的疟疾传播模型是理解疾病动态和规划干预措施的有用工具,但校准这些模型可能需要大量计算资源。我们提出了一种多任务深度学习方法,用于模拟和校准一个复杂的基于主体的疟疾传播模型。我们的神经网络模拟器是在来自EMOD疟疾模型的大量模拟数据上进行训练的,EMOD疟疾模型是一个基于主体的疟疾传播动力学模型,它捕捉了免疫参数与流行病学结果之间的关系,如撒哈拉以南非洲八个研究地点的年龄分层发病率和患病率。然后,我们将训练好的模拟器与参数估计技术结合使用,以将基础模型校准到参考数据。综合来看,该分析展示了机器学习引导的模拟器设计在复杂科学过程中的潜力,以及它们与实地数据的比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c892/12327647/113c3e6a4953/pcbi.1013330.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c892/12327647/f9ce26848815/pcbi.1013330.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c892/12327647/d0794727dcdd/pcbi.1013330.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c892/12327647/a18dbe06b48f/pcbi.1013330.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c892/12327647/54e3c5670a2f/pcbi.1013330.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c892/12327647/8133e8012195/pcbi.1013330.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c892/12327647/113c3e6a4953/pcbi.1013330.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c892/12327647/f9ce26848815/pcbi.1013330.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c892/12327647/d0794727dcdd/pcbi.1013330.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c892/12327647/a18dbe06b48f/pcbi.1013330.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c892/12327647/54e3c5670a2f/pcbi.1013330.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c892/12327647/8133e8012195/pcbi.1013330.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c892/12327647/113c3e6a4953/pcbi.1013330.g006.jpg

相似文献

[1]
Multitask deep learning for the emulation and calibration of an agent-based malaria transmission model.

PLoS Comput Biol. 2025-7-31

[2]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[3]
Indoor residual spraying for preventing malaria in communities using insecticide-treated nets.

Cochrane Database Syst Rev. 2022-1-17

[4]
Indoor residual spraying for preventing malaria.

Cochrane Database Syst Rev. 2010-4-14

[5]
Gaussian process emulation to improve efficiency of computationally intensive multidisease models: a practical tutorial with adaptable R code.

BMC Med Res Methodol. 2024-1-27

[6]
Short-Term Memory Impairment

2025-1

[7]
Primaquine or other 8-aminoquinoline for reducing P. falciparum transmission.

Cochrane Database Syst Rev. 2014-6-30

[8]
Primaquine or other 8-aminoquinoline for reducing Plasmodium falciparum transmission.

Cochrane Database Syst Rev. 2015-2-19

[9]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[10]
Sexual Harassment and Prevention Training

2025-1

本文引用的文献

[1]
Towards transforming malaria vector surveillance using VectorBrain: a novel convolutional neural network for mosquito species, sex, and abdomen status identifications.

Sci Rep. 2024-10-10

[2]
MGDrivE 3: A decoupled vector-human framework for epidemiological simulation of mosquito genetic control tools and their surveillance.

PLoS Comput Biol. 2024-5

[3]
Rapid classification of epidemiologically relevant age categories of the malaria vector, Anopheles funestus.

Parasit Vectors. 2024-3-18

[4]
Estimating long-term vaccine effectiveness against SARS-CoV-2 variants: a model-based approach.

Nat Commun. 2023-7-19

[5]
Trends of the Global, Regional and National Incidence, Mortality, and Disability-Adjusted Life Years of Malaria, 1990-2019: An Analysis of the Global Burden of Disease Study 2019.

Risk Manag Healthc Policy. 2023-6-26

[6]
No evidence of sustained nonzoonotic Plasmodium knowlesi transmission in Malaysia from modelling malaria case data.

Nat Commun. 2023-6-1

[7]
Bridging the gap between mechanistic biological models and machine learning surrogates.

PLoS Comput Biol. 2023-4

[8]
Model-informed target product profiles of long-acting-injectables for use as seasonal malaria prevention.

PLOS Glob Public Health. 2022-3-14

[9]
Population replacement gene drive characteristics for malaria elimination in a range of seasonal transmission settings: a modelling study.

Malar J. 2022-7-26

[10]
Leveraging mathematical models of disease dynamics and machine learning to improve development of novel malaria interventions.

Infect Dis Poverty. 2022-6-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索