Suppr超能文献

由脑谷氨酸脱羧酶催化的转氨基作用。

Transaminations catalysed by brain glutamate decarboxylase.

作者信息

Porter T G, Spink D C, Martin S B, Martin D L

出版信息

Biochem J. 1985 Nov 1;231(3):705-12. doi: 10.1042/bj2310705.

Abstract

In addition to normal decarboxylation of glutamate to 4-aminobutyrate, glutamate decarboxylase from pig brain was shown to catalyse decarboxylation-dependent transamination of L-glutamate and direct transamination of 4-aminobutyrate with pyridoxal 5'-phosphate to yield succinic semialdehyde and pyridoxamine 5'-phosphate in a 1:1 stoichiometric ratio. Both reactions result in conversion of holoenzyme into apoenzyme. With glutamate as substrate the rates of transamination differed markedly among the three forms of the enzyme (0.008, 0.012 and 0.029% of the rate of 4-aminobutyrate production by the alpha-, beta- and gamma-forms at pH 7.2) and accounted for the differences among the forms in rates of inactivation by glutamate and 4-aminobutyrate. Rates of transamination were maximal at about pH 8 and varied in parallel with the rate constants for inactivation from pH 6.5 to 8.0. Rates of transamination of glutamate and 4-aminobutyrate were similar, suggesting that the decarboxylation step is not entirely rate-limiting in the normal mechanism. The transamination was reversible, and apoenzyme could be reconstituted to holoenzyme by reverse transamination with succinic semialdehyde and pyridoxamine 5'-phosphate. As a major route of apoenzyme formation, the transamination reaction appears to be physiologically significant and could account for the high proportion of apoenzyme in brain.

摘要

除了谷氨酸正常脱羧生成4-氨基丁酸外,猪脑谷氨酸脱羧酶还可催化L-谷氨酸的脱羧依赖性转氨基作用,以及4-氨基丁酸与磷酸吡哆醛的直接转氨基作用,以1:1的化学计量比生成琥珀酸半醛和磷酸吡哆胺。这两个反应都会导致全酶转化为脱辅基酶。以谷氨酸为底物时,三种酶形式的转氨基速率差异显著(在pH 7.2时,α-、β-和γ-形式的转氨基速率分别为4-氨基丁酸生成速率的0.008%、0.012%和0.029%),这也解释了不同形式的酶被谷氨酸和4-氨基丁酸灭活速率的差异。转氨基速率在约pH 8时达到最大值,并且在pH 6.5至8.0范围内与失活速率常数呈平行变化。谷氨酸和4-氨基丁酸的转氨基速率相似,这表明在正常机制中脱羧步骤并非完全限速。转氨基反应是可逆的,脱辅基酶可以通过与琥珀酸半醛和磷酸吡哆胺的逆转运作用重新组装成全酶。作为脱辅基酶形成的主要途径,转氨基反应似乎具有生理意义,并且可以解释脑中脱辅基酶的高比例。

相似文献

1
Transaminations catalysed by brain glutamate decarboxylase.
Biochem J. 1985 Nov 1;231(3):705-12. doi: 10.1042/bj2310705.
2
Rapid inactivation of brain glutamate decarboxylase by aspartate.
J Neurochem. 1987 Jan;48(1):67-72. doi: 10.1111/j.1471-4159.1987.tb13128.x.
3
Activation of glutamate apodecarboxylase by succinic semialdehyde and pyridoxamine 5'-phosphate.
J Neurochem. 1986 Aug;47(2):468-71. doi: 10.1111/j.1471-4159.1986.tb04524.x.
5
Glutamate decarboxylase side reactions catalyzed by the enzyme.
Eur J Biochem. 1986 Nov 3;160(3):515-20. doi: 10.1111/j.1432-1033.1986.tb10069.x.
6
Non-steady-state kinetics of brain glutamate decarboxylase resulting from interconversion of the apo- and holoenzyme.
Biochim Biophys Acta. 1986 Nov 21;874(2):235-44. doi: 10.1016/0167-4838(86)90123-8.
7
Stability and activation of glutamate apodecarboxylase from pig brain.
J Neurochem. 1988 Dec;51(6):1886-91. doi: 10.1111/j.1471-4159.1988.tb01173.x.

引用本文的文献

1
Structural basis for substrate specificity of l-methionine decarboxylase.
Protein Sci. 2021 Mar;30(3):663-677. doi: 10.1002/pro.4027. Epub 2021 Jan 21.
2
Quantum chemistry studies of the catalysis mechanism differences between the two isoforms of glutamic acid decarboxylase.
J Mol Model. 2013 Feb;19(2):705-14. doi: 10.1007/s00894-012-1594-x. Epub 2012 Sep 27.
3
Redox-switch modulation of human SSADH by dynamic catalytic loop.
EMBO J. 2009 Apr 8;28(7):959-68. doi: 10.1038/emboj.2009.40. Epub 2009 Mar 19.
4
Motifs and structural fold of the cofactor binding site of human glutamate decarboxylase.
Protein Sci. 1998 May;7(5):1092-105. doi: 10.1002/pro.5560070503.
6
Regulatory properties of brain glutamate decarboxylase.
Cell Mol Neurobiol. 1987 Sep;7(3):237-53. doi: 10.1007/BF00711302.
7
The structural and functional heterogeneity of glutamic acid decarboxylase: a review.
Neurochem Res. 1991 Mar;16(3):215-26. doi: 10.1007/BF00966084.
8
Cofactor interactions and the regulation of glutamate decarboxylase activity.
Neurochem Res. 1991 Mar;16(3):243-9. doi: 10.1007/BF00966087.

本文引用的文献

2
Spectral properties of the coenzyme bound to DOPA decarboxylase from pig kidney.
FEBS Lett. 1971 Oct 1;17(2):231-235. doi: 10.1016/0014-5793(71)80153-9.
3
An abnormal reaction occurring in the presence of L-aromatic aminoacid decarboxylase.
Biochem Biophys Res Commun. 1981 Mar 31;99(2):576-83. doi: 10.1016/0006-291x(81)91784-8.
4
Evidence for feedback regulation of glutamate decarboxylase by gamma-aminobutyric acid.
J Neurochem. 1984 Nov;43(5):1464-7. doi: 10.1111/j.1471-4159.1984.tb05409.x.
6
Brain succinate semialdehyde dehydrogenase. I. Assay and distribution.
J Neurochem. 1965 Sep-Oct;12(9):893-900. doi: 10.1111/j.1471-4159.1965.tb10275.x.
8
A solvent isotope effect probe for enzyme-mediated proton transfers.
J Am Chem Soc. 1977 Mar 2;99(5):1660-1. doi: 10.1021/ja00447a071.
9
Mechanism of inactivation of ornithine decarboxylase by alpha-methylornithine.
Biochemistry. 1978 Mar 21;17(6):1010-4. doi: 10.1021/bi00599a011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验