Selvin Skyler P, Esfandyarpour Majid, Ji Anqi, Lee Yan Joe, Yule Colin, Song Jung-Hwan, Taghinejad Mohammad, Brongersma Mark L
Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA.
Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
Science. 2025 Jul 31;389(6759):516-520. doi: 10.1126/science.adv1728.
The important role of metallic nanostructures in nanophotonics will expand if ways to electrically manipulate their optical resonances at high speed can be identified. We capitalized on electrically driven surface acoustic waves and the extreme light concentration afforded by gap plasmons to achieve this goal. We placed gold nanoparticles in a particle-on-mirror configuration with a few-nanometer-thick, compressible polymer spacer. Surface acoustic waves were then used to tune light scattering at speeds approaching the gigahertz regime. We observed evidence that the surface acoustic waves produced mechanical deformations in the polymer and that ensuing nonlinear mechanical dynamics led to unexpectedly large levels of strain and spectral tuning. Our approach provides a design strategy for electrically driven dynamic metasurfaces and fundamental explorations of high-frequency, polymer dynamics in ultraconfined geometries.
如果能够找到高速电操纵金属纳米结构光学共振的方法,那么它们在纳米光子学中的重要作用将会得到扩展。我们利用电驱动的表面声波以及间隙等离子体激元所带来的极高光场集中,来实现这一目标。我们将金纳米颗粒置于一种带有几纳米厚可压缩聚合物间隔层的镜上粒子结构中。然后利用表面声波以接近吉赫兹的速度调谐光散射。我们观察到有证据表明,表面声波在聚合物中产生了机械变形,并且随之而来的非线性机械动力学导致了意外的高应变水平和光谱调谐。我们的方法为电驱动动态超表面提供了一种设计策略,以及对超受限几何结构中高频聚合物动力学的基础探索。