Suppr超能文献

评估用于通过可穿戴鼻环监测奶牛行为的机器学习分类器及可解释性。

Evaluating machine learning classifiers and explainability for monitoring cow behaviour with wearable nose rings.

作者信息

Essien Daniel Edison, Inyang Saviour, Umoren Imeh

机构信息

Faculty of Computer Science, Dalhousie University, 6050 University Avenue, Halifax, Canada.

Faculty of Computing, Topfaith University, Mkpatak, Nigeria.

出版信息

Prev Vet Med. 2025 Nov;244:106630. doi: 10.1016/j.prevetmed.2025.106630. Epub 2025 Jul 27.

Abstract

Wearable technologies are revolutionizing precision livestock monitoring by allowing continuous real-time monitoring of animal behaviour. This study investigates and evaluates the use of machine learning techniques to classify dairy cow behaviours using tri-axial accelerometer data collected from novel wearable nose ring sensor. The raw dataset initially included five distinct behaviours: Feeding, Ruminating, Standing, Lying and Walking. However due to data imbalance and data limitations we refined the classification to three core categories: Feeding, Rumination and Walking. While previous studies on this dataset focused solely on Long Short-Term Memory(LSTM) network, the comparative potential of other models remained unexplored. To address this gap, we performed a comparative study on multiple classifiers, including Random Forest (RF), Artificial Neural Network (ANN), Gated Recurrent Unit (GRU) and a hybrid Convolutional Neural Network with LSTM (CNN-LSTM). The obtained results showed that GRU model performed well with an accuracy of 97.78 %, followed by CNN-LSTM, ANN and RF which scored 97.78 %, 68.27 % and 67.6 % respectively. To enhance model transparency, Explainable AI techniques were utilized. SHAP and LIME were utilized to showcase feature importance and interpretability of these models. These findings showcase the effectiveness of deep learning models (GRU, CNN-LSTM) and emphasizes the importance of model explainability in precision livestock management.

摘要

可穿戴技术正在彻底改变精准畜牧监测,它能够对动物行为进行连续实时监测。本研究调查并评估了使用机器学习技术,通过从新型可穿戴鼻环传感器收集的三轴加速度计数据对奶牛行为进行分类。原始数据集最初包括五种不同行为:进食、反刍、站立、躺卧和行走。然而,由于数据不平衡和数据限制,我们将分类细化为三个核心类别:进食、反刍和行走。虽然此前关于该数据集的研究仅专注于长短期记忆(LSTM)网络,但其他模型的比较潜力仍未得到探索。为了填补这一空白,我们对多个分类器进行了比较研究,包括随机森林(RF)、人工神经网络(ANN)、门控循环单元(GRU)以及一种结合了卷积神经网络与LSTM的混合模型(CNN-LSTM)。所得结果表明,GRU模型表现出色,准确率达到97.78%,其次是CNN-LSTM、ANN和RF,它们的得分分别为97.78%、68.27%和67.6%。为了提高模型的透明度,我们使用了可解释人工智能技术。利用SHAP和LIME展示了这些模型的特征重要性和可解释性。这些发现展示了深度学习模型(GRU、CNN-LSTM)的有效性,并强调了模型可解释性在精准畜牧管理中的重要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验