Ma Zhuang, Zhang Qi, Yang Yin, Sun Dong, Zhang Chen, Li Yulong, Xiao Ting, Lu Changbo, Gao Jinsen, Ma Xinlong, Li Yongfeng
State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
J Colloid Interface Sci. 2025 Dec 15;700(Pt 3):138533. doi: 10.1016/j.jcis.2025.138533. Epub 2025 Jul 25.
SiO is a high-potential candidate material for silicon (Si) derived anodes, owing to its high specific capacity and commendable cycling performance. However, the irreversible formation of phases during lithiation results in low Initial Coulombic Efficiency (ICE). In this work, the Si/C composite (Si@FC) with a fluorine (F) -doped bilayer structure is synthesized via "Vapor-Phase Fluorination" using Polytetrafluoroethylene (PTFE) as a source of fluorine and carbon. The hydrogen fluoride gas generated from the high-temperature pyrolysis of PTFE effectively etches away the oxygen-containing coating on the surface of the Si particles. By optimizing the oxygen content in Si oxide, the issue of low ICE associated with Si oxide can be effectively addressed. Consequently, the Si@FC anode achieves an ICE of 46.70 %, representing a 20 % improvement over that of raw Si. Furthermore, a composite material designated as Si@FC@G, which comprises 10 wt% Si@FC and 90 wt% graphite matrix is prepared through ball milling. After 200 cycles at 0.2 A g, Si@FC@G maintains a reversible capacity of 409 mAh g, demonstrating a high capacity retention of 91.32 %. The exceptional performance of these composite materials arises from the precise regulation of oxygen content, the distinctive double-layer structure, and the incorporation of F atoms. Additionally, interactions between Li on the surface of SiO and F groups facilitate the formation of a solid electrolyte interphase enriched with LiF. This innovative design effectively addresses the fundamental issue related to low ICE in SiO while providing a viable strategy for the large-scale development of high-stability Si-based anodes.
由于其高比容量和出色的循环性能,SiO是用于硅(Si)衍生阳极的高潜力候选材料。然而,锂化过程中相的不可逆形成导致初始库仑效率(ICE)较低。在这项工作中,通过使用聚四氟乙烯(PTFE)作为氟和碳的来源,通过“气相氟化”合成了具有氟(F)掺杂双层结构的Si/C复合材料(Si@FC)。PTFE高温热解产生的氟化氢气体有效地蚀刻掉了Si颗粒表面的含氧涂层。通过优化氧化硅中的氧含量,可以有效解决与氧化硅相关的低ICE问题。因此,Si@FC阳极的ICE达到46.70%,比原始Si提高了20%。此外,通过球磨制备了一种名为Si@FC@G的复合材料,其包含10 wt%的Si@FC和90 wt%的石墨基体。在0.2 A g下循环200次后,Si@FC@G保持409 mAh g的可逆容量,显示出91.32%的高容量保持率。这些复合材料的优异性能源于氧含量的精确调控、独特的双层结构以及F原子的引入。此外,SiO表面的Li与F基团之间的相互作用促进了富含LiF的固体电解质界面的形成。这种创新设计有效地解决了与SiO中低ICE相关的基本问题,同时为高稳定性Si基阳极的大规模开发提供了可行策略。