Suppr超能文献

蛋白质组学揭示嗜水气单胞菌LP-2的EamB转运蛋白在生物膜形成中的作用。

Proteomics reveals the role of the EamB transporter from Aeromonas hydrophila LP-2 in biofilm formation.

作者信息

Xu Qiaozhen, Tian Feng, Wang Xinyun, Lian Juanqi, Zhang Xiaowei, Lin Xiangmin, Liu Yanling

机构信息

College of JunCao Science and Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

College of JunCao Science and Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National Engineering Research Center of JUNCAO Technology,Fujian Agriculture and Forestry University, Fuzhou 350002, China.

出版信息

J Proteomics. 2025 Oct 30;321:105510. doi: 10.1016/j.jprot.2025.105510. Epub 2025 Jul 29.

Abstract

Biofilms play a pivotal role in the survival and persistence of microorganisms, endowing them with heightened resistance to environmental stressors and antimicrobial agents. The EamB protein, which encodes an inner membrane transporter, acted as a negative regulator of biofilm formation, and the gene eamB deletion in the pathogen Aeromonas hydrophila LP-2 resulted in a significant increase in biofilm formation. Proteomic analysis revealed a total of 616 differentially abundant proteins between the ΔeamB and wild-type (WT) strains, with 308 downregulated and 308 upregulated. RT-qPCR was employed to verify the stability and accuracy of the proteomics data. Bioinformatic analysis indicated that EamB is involved in critical bacterial biological processes, including flagellar assembly, amino acid metabolism, and fatty acid degradation. Biofilm formation assays further revealed that supplementation with exogenous lysine significantly inhibited biofilm formation in the ΔeamB strain, conversely, exogenous cysteine and O-acetylserine obviously increased biofilm formation in the ΔeamB strain. These findings demonstrated that EamB may modulate bacterial biofilm formation in A. hydrophila through the regulation of amino acid metabolism. This finding provides novel insights into the regulatory mechanism underlying biofilm formation and highlights potential targets for the development of future antibacterial strategies. SIGNIFICANCE STATEMENT: This study elucidates the critical role of the eamB gene in Aeromonas hydrophila, a significant aquatic pathogen, by demonstrating its impact on biofilm formation and physiological traits. Through comparative proteomic analysis, we identified 616 differentially abundant proteins in the ΔeamB mutant, revealing its involvement in key metabolic pathways such as amino acid metabolism, flagellar assembly, and fatty acid degradation. Notably, eamB deletion enhanced biofilm formation, while exogenous amino acids like cysteine and O-acetylserine obviously increased biofilm formation in the ΔeamB strain. These findings highlight EamB as a regulator of biofilm formation, offering novel molecular insights into bacterial pathogenicity. This research advances our understanding of biofilm-associated antibiotic resistance and provides potential targets for developing strategies to mitigate infections caused by A. hydrophila in aquaculture and public health.

摘要

生物膜在微生物的存活和持续存在中起着关键作用,使其对环境应激源和抗菌剂具有更高的抗性。编码内膜转运蛋白的EamB蛋白作为生物膜形成的负调节因子,病原菌嗜水气单胞菌LP-2中的eamB基因缺失导致生物膜形成显著增加。蛋白质组学分析显示,ΔeamB菌株与野生型(WT)菌株之间共有616种差异丰度蛋白,其中308种下调,308种上调。采用RT-qPCR验证蛋白质组学数据的稳定性和准确性。生物信息学分析表明,EamB参与关键的细菌生物学过程,包括鞭毛组装、氨基酸代谢和脂肪酸降解。生物膜形成试验进一步表明,补充外源赖氨酸可显著抑制ΔeamB菌株的生物膜形成,相反,外源半胱氨酸和O-乙酰丝氨酸明显增加ΔeamB菌株的生物膜形成。这些发现表明,EamB可能通过调节氨基酸代谢来调节嗜水气单胞菌中的细菌生物膜形成。这一发现为生物膜形成的调控机制提供了新的见解,并突出了未来抗菌策略开发的潜在靶点。意义声明:本研究通过证明eamB基因对生物膜形成和生理特性的影响,阐明了其在重要水生病原菌嗜水气单胞菌中的关键作用。通过比较蛋白质组学分析,我们在ΔeamB突变体中鉴定出616种差异丰度蛋白,揭示了其参与氨基酸代谢、鞭毛组装和脂肪酸降解等关键代谢途径。值得注意的是,eamB缺失增强了生物膜形成,而半胱氨酸和O-乙酰丝氨酸等外源氨基酸明显增加了ΔeamB菌株的生物膜形成。这些发现突出了EamB作为生物膜形成的调节因子,为细菌致病性提供了新的分子见解。本研究推进了我们对生物膜相关抗生素抗性的理解,并为制定减轻水产养殖和公共卫生中嗜水气单胞菌引起的感染的策略提供了潜在靶点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验