Zhao Yifei, Liang Ziqi, Qiu Yingrui, Wang Xiaona
School of New Media, Beijing Institute of Graphic Communication, Beijing, 102600, China.
Sci Rep. 2025 Jul 31;15(1):27896. doi: 10.1038/s41598-025-12434-4.
Art's unique style and creativity are essential in defining a work's identity, conveying emotions, and shaping audience perception. Recent advancements in diffusion models have revolutionized art design, animation, and gaming, particularly in generating original artwork and visual identities. However, traditional creative processes face challenges such as slow innovation, high costs, and limited scalability. Consequently, deep learning has emerged as a promising solution for enhancing painting-style creative design. In this paper, we present the Painting-Style Design Assistant Network (PDANet), a groundbreaking network architecture designed for advanced style transformation. Our work is supported by the Painting-42 dataset, a meticulously curated collection of 4055 artworks from 42 illustrious Chinese painters, capturing the aesthetic nuances of Chinese painting and offering invaluable design references. Additionally, we introduce a lightweight Identity-Net, designed to enhance large-scale text-to-image (T2I) models by aligning internal knowledge with external control signals. This innovative Identity-Net seamlessly integrates image prompts into the U-Net encoder, enabling the generation of diverse and consistent images. Through extensive quantitative and qualitative evaluations, our approach has demonstrated superior performance compared to existing methods, producing high-quality, versatile content with broad applicability across various creative domains. Our work not only advances the field of AI-driven art but also offers a new paradigm for the future of creative design. The code and data are available at https://github.com/aigc-hi/PDANet .
艺术独特的风格和创造力对于定义作品的身份、传达情感以及塑造观众认知至关重要。扩散模型的最新进展彻底改变了艺术设计、动画和游戏领域,尤其是在生成原创艺术作品和视觉形象方面。然而,传统的创作过程面临着诸如创新缓慢、成本高昂和可扩展性有限等挑战。因此,深度学习已成为增强绘画风格创意设计的一个有前景的解决方案。在本文中,我们展示了绘画风格设计辅助网络(PDANet),这是一种为高级风格转换设计的开创性网络架构。我们的工作得到了绘画 - 42数据集的支持,该数据集精心挑选了42位杰出中国画家的4055幅艺术作品,捕捉了中国绘画的美学细微差别并提供了宝贵的设计参考。此外,我们引入了一个轻量级身份网络,旨在通过将内部知识与外部控制信号对齐来增强大规模文本到图像(T2I)模型。这个创新的身份网络将图像提示无缝集成到U-Net编码器中,能够生成多样且一致的图像。通过广泛的定量和定性评估,我们的方法与现有方法相比表现出卓越的性能,能够生成高质量、多功能的内容,在各个创意领域具有广泛的适用性。我们的工作不仅推动了人工智能驱动艺术的领域发展,还为创意设计的未来提供了一种新范式。代码和数据可在https://github.com/aigc-hi/PDANet获取。