Suppr超能文献

无标记物预测明场图像中的细胞染色。

Label-free prediction of cell painting from brightfield images.

机构信息

Department for Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, CB3 0WA, UK.

Discovery Sciences, R&D, AstraZeneca, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK.

出版信息

Sci Rep. 2022 Jun 15;12(1):10001. doi: 10.1038/s41598-022-12914-x.

Abstract

Cell Painting is a high-content image-based assay applied in drug discovery to predict bioactivity, assess toxicity and understand mechanisms of action of chemical and genetic perturbations. We investigate label-free Cell Painting by predicting the five fluorescent Cell Painting channels from brightfield input. We train and validate two deep learning models with a dataset representing 17 batches, and we evaluate on batches treated with compounds from a phenotypic set. The mean Pearson correlation coefficient of the predicted images across all channels is 0.84. Without incorporating features into the model training, we achieved a mean correlation of 0.45 with ground truth features extracted using a segmentation-based feature extraction pipeline. Additionally, we identified 30 features which correlated greater than 0.8 to the ground truth. Toxicity analysis on the label-free Cell Painting resulted a sensitivity of 62.5% and specificity of 99.3% on images from unseen batches. We provide a breakdown of the feature profiles by channel and feature type to understand the potential and limitations of label-free morphological profiling. We demonstrate that label-free Cell Painting has the potential to be used for downstream analyses and could allow for repurposing imaging channels for other non-generic fluorescent stains of more targeted biological interest.

摘要

细胞画像是一种高内涵基于图像的检测方法,应用于药物发现中,以预测生物活性、评估毒性以及了解化学和遗传扰动的作用机制。我们通过从明场输入预测五个荧光细胞画通道来研究无标记细胞画。我们使用代表 17 个批次的数据集来训练和验证两个深度学习模型,并在用表型集的化合物处理的批次上进行评估。所有通道的预测图像的平均 Pearson 相关系数为 0.84。在不将特征纳入模型训练的情况下,我们使用基于分割的特征提取管道提取的地面真值特征,实现了 0.45 的平均相关性。此外,我们还确定了 30 个与地面真值相关度大于 0.8 的特征。对无标记细胞画的毒性分析表明,在来自未见过的批次的图像上,灵敏度为 62.5%,特异性为 99.3%。我们按通道和特征类型对特征分布进行细分,以了解无标记形态分析的潜力和局限性。我们证明,无标记细胞画有可能用于下游分析,并可以允许为其他更具针对性的生物兴趣的非通用荧光染色重新利用成像通道。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6342/9200748/531693d30d77/41598_2022_12914_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验