Suppr超能文献

一种基于人工智能的模糊控制算法,用于传统中国画与人工智能绘画的融合。

A fuzzy control algorithm based on artificial intelligence for the fusion of traditional Chinese painting and AI painting.

作者信息

Xu Xu

机构信息

College of International Business and Economics, WTU, Wuhan, 430200, China.

出版信息

Sci Rep. 2024 Aug 1;14(1):17846. doi: 10.1038/s41598-024-68375-x.

Abstract

Recently, artificial intelligence (AI)-generated resources have gained popularity because of their high effectiveness and reliability in terms of output and capacity to be customized and broadened, especially in image generation. Traditional Chinese paintings (TCPs) are incomplete because their color contrast is insufficient, and object reality is minimal. However, combining AI painting (AIP) with TCP remains inadequate and uncertain because of image features such as patterns, styles, and color. Hence, an algorithm named variational fusion-based fuzzy accelerated painting (VF2AP) has been proposed to resolve this challenge. Initially, the collected TCP data source is applied for preprocessing to convert it into a grayscale image. Then, the feature extraction process is performed via fuzzy-based local binary pattern (FLBP) and brushstroke patterns to enhance the fusion of intelligent fuzzy logic to optimize the local patterns of textures in a noisy image. Second, the extracted features are used as inputs to the variational autoencoder (VAE), which is used to avoid latent space irregularities in the image and the reconstructed image by maintaining minimum reconstruction loss. Third, fuzzy inference rules are applied to avoid variation in the fusion process of the reconstructed and original images. Fourth, the feedback mechanism is designed with evaluation metrics such as area under the curve-receiver operating characteristic (AUC-ROC) analysis, mean square error (MSE), structural similarity index (SSIM), and Kullback‒Leibler (KL) divergence to enhance the viewer's understanding of fused painting images.

摘要

近年来,人工智能(AI)生成的资源因其在输出、定制和扩展能力方面的高效性和可靠性而受到欢迎,尤其是在图像生成方面。传统中国画(TCP)并不完整,因为其色彩对比度不足,物体真实感也很弱。然而,由于图案、风格和颜色等图像特征,将AI绘画(AIP)与TCP相结合仍然不够完善且存在不确定性。因此,人们提出了一种名为基于变分融合的模糊加速绘画(VF2AP)的算法来应对这一挑战。首先,将收集到的TCP数据源进行预处理,将其转换为灰度图像。然后,通过基于模糊的局部二值模式(FLBP)和笔触模式进行特征提取,以增强智能模糊逻辑的融合,优化噪声图像中纹理的局部模式。其次,将提取的特征用作变分自编码器(VAE)的输入,通过保持最小重构损失来避免图像和重构图像中的潜在空间不规则性。第三,应用模糊推理规则来避免重构图像和原始图像融合过程中的变化。第四,设计反馈机制,采用曲线下面积-接收器操作特征(AUC-ROC)分析、均方误差(MSE)、结构相似性指数(SSIM)和库尔贝克-莱布勒(KL)散度等评估指标,以增强观众对融合绘画图像的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1582/11294523/05c60f6be372/41598_2024_68375_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验