Suppr超能文献

基于网络药理学和生物信息学揭示黄伞治疗阿尔茨海默病的活性成分及作用机制

Uncovering active ingredients and mechanisms of Pholiota adiposa in the treatment of Alzheimer's disease based on network pharmacology and bioinformatics.

作者信息

Xiaoying Ma, Zhiming Huo, Mingwen Shi, Hong Wang, Tao Yang, Jun Xiao, Na Gong

机构信息

The Institute of Edible Fungi, Liaoning Academy of Agricultural Sciences, No. 84 Dongling Road, Shenhe District, Shenyang, 110161, China.

Information Center, Guidaojiaotong Polytechnic Institute, Shenyang, 110161, China.

出版信息

Sci Rep. 2025 Jul 31;15(1):27981. doi: 10.1038/s41598-025-94861-x.

Abstract

Pholiota adiposa is recognized for its health benefits, particularly in Alzheimer's disease (AD), but its molecular mechanism remains elusive. Our study employs network pharmacology and machine learning to uncover its therapeutic potential. We constructed a network of AD-relevant target proteins using databases like TCMSP, CTD, and GeneCards, and performed gene enrichment and functional analysis with DAVID, GO, and KEGG via Hiplot. Targets were identified through Cytoscape's degree analysis and the Aging Atlas database for aging-related genes. Clinical targets were confirmed with GEO, and molecular docking was executed using AutoDock Vina. LASSO regression and random forest algorithms were applied for target model selection, and molecular dynamics simulations were run with Gromacs2022.3. Our findings suggest Pholiota adiposa modulates key proteins involved in AD, including STAT3, PRKCA, NF-κB1, and CDK1, potentially inhibiting protein phosphorylation and influencing neuronal membrane synthesis and RNA polymerase II activity. KEGG analysis revealed its impact on cancer pathways, indicating a multifaceted role. High-degree targets like STAT3 and NF-κB1 were identified as effective, with TERT showing a significant role in aging. Machine learning confirmed the diagnostic importance of STAT3 and NFKB1 in AD. Molecular docking highlighted the affinity of Pholiota adiposa for these targets, with carnosol, carnosic acid, and clovane diol as key components. Carnosol, in particular, induced a conformational change in STAT3, enhancing its efficacy. Pholiota adiposa shows promise as a therapeutic agent in AD treatment by modulating various pathways and signaling mechanisms, as demonstrated through network pharmacology and machine learning analyses. This study underscores its potential in managing neurodegenerative diseases.

摘要

肥胖鳞伞因其对健康的益处而受到认可,尤其是在阿尔茨海默病(AD)方面,但其分子机制仍不清楚。我们的研究采用网络药理学和机器学习来揭示其治疗潜力。我们使用中药系统药理学数据库(TCMSP)、CTD和基因卡片(GeneCards)等数据库构建了与AD相关的靶蛋白网络,并通过Hiplot使用DAVID、基因本体论(GO)和京都基因与基因组百科全书(KEGG)进行基因富集和功能分析。通过Cytoscape的度分析和衰老图谱数据库中与衰老相关的基因来鉴定靶点。用基因表达综合数据库(GEO)确认临床靶点,并使用AutoDock Vina进行分子对接。应用最小绝对收缩和选择算子(LASSO)回归和随机森林算法进行靶标模型选择,并使用Gromacs2022.3进行分子动力学模拟。我们的研究结果表明,肥胖鳞伞可调节AD中涉及的关键蛋白,包括信号转导和转录激活因子3(STAT3)、蛋白激酶Cα(PRKCA)、核因子κB1(NF-κB1)和细胞周期蛋白依赖性激酶1(CDK1),可能抑制蛋白磷酸化并影响神经元膜合成和RNA聚合酶II活性。KEGG分析揭示了其对癌症通路的影响,表明其具有多方面的作用。鉴定出STAT3和NF-κB1等高连接度靶点是有效的,端粒酶逆转录酶(TERT)在衰老中发挥重要作用。机器学习证实了STAT3和NFKB在AD诊断中的重要性。分子对接突出了肥胖鳞伞对这些靶点的亲和力,其中鼠尾草酸、鼠尾草酚和菖蒲二醇是关键成分。特别是鼠尾草酸诱导了STAT3的构象变化,增强了其功效。通过网络药理学和机器学习分析表明,肥胖鳞伞通过调节各种通路和信号机制,有望成为AD治疗的一种治疗剂。这项研究强调了其在管理神经退行性疾病方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验