Sangeetha V, Agilandeeswari L
School of Computer Science Engineering & Information Systems, Vellore Institute of Technology, Vellore, 632014, India.
Sci Rep. 2025 Jul 31;15(1):27964. doi: 10.1038/s41598-025-09355-7.
Hyperspectral imaging has emerged as a powerful tool for remote sensing applications, offering rich spectral information across a broad electromagnetic spectrum. However, the high dimensionality of hyperspectral data poses significant challenges in analysis and interpretation. In this study, we propose a novel approach for hyperspectral image processing, focusing on dimensionality reduction, albedo recovery, and subsequent classification. Our method begins with a grouping strategy based on the electromagnetic spectrum that considers the images' physical properties, facilitating the segmentation of hyperspectral data into meaningful spectral bands. This grouping reduces the dimensionality of the data and preserves crucial spectral information. Subsequently, we integrate autoencoders to incorporate non-linear transformations in the feature extraction phase, thereby improving the model's capacity to learn intricate patterns within the data. A key goal of our methodology is to effectively embed spatial information into the representation. Albedo recovery is employed aimed at improving spatial resolution while retaining spectral fidelity. By leveraging the reduced-dimensional representation obtained through grouping and autoencoders, we reconstruct the hyperspectral image with enhanced spatial details, thereby facilitating more accurate interpretation and analysis. To assess the performance of the proposed approach, we perform experiments using three standard hyperspectral datasets: Indian Pines, University of Pavia, and Salinas.
高光谱成像已成为遥感应用的强大工具,可在广泛的电磁光谱范围内提供丰富的光谱信息。然而,高光谱数据的高维度在分析和解释方面带来了重大挑战。在本研究中,我们提出了一种用于高光谱图像处理的新方法,重点在于降维、反照率恢复及后续分类。我们的方法始于基于电磁光谱的分组策略,该策略考虑了图像的物理特性,有助于将高光谱数据分割成有意义的光谱带。这种分组降低了数据维度并保留了关键光谱信息。随后,我们集成自动编码器以在特征提取阶段纳入非线性变换,从而提高模型学习数据中复杂模式的能力。我们方法的一个关键目标是有效地将空间信息嵌入到表示中。采用反照率恢复旨在提高空间分辨率同时保持光谱保真度。通过利用通过分组和自动编码器获得的降维表示,我们重建具有增强空间细节的高光谱图像,从而便于更准确的解释和分析。为评估所提出方法的性能,我们使用三个标准高光谱数据集进行实验:印第安纳松树、帕维亚大学和萨利纳斯。