Suppr超能文献

一种基于迁移学习的可解释视觉Transformer用于高效干旱胁迫识别。

An explainable vision transformer with transfer learning based efficient drought stress identification.

作者信息

Patra Aswini Kumar, Varshney Ankit, Sahoo Lingaraj

机构信息

Department of Computer Science and Engineering, North Eastern Regional Institute of Science and Technology, Nirjuli, India.

Department of Bio-Science and Bio-Engineering, Indian Institute of Technology Guwahati, Guwahati, India.

出版信息

Plant Mol Biol. 2025 Jul 31;115(4):98. doi: 10.1007/s11103-025-01620-7.

Abstract

Early detection of drought stress is critical for taking timely measures for reducing crop loss before the drought impact becomes irreversible. The subtle phenotypical and physiological changes in response to drought stress are captured by non-invasive imaging techniques and these imaging data serve as valuable resource for machine learning methods to identify drought stress. While convolutional neural networks are in wide use, vision transformers (ViTs) present a promising alternative in capturing long-range dependencies and intricate spatial relationships, thereby enhancing the detection of subtle indicators of drought stress. We propose an explainable deep learning pipeline that leverages the power of ViTs for drought stress detection in potato crops using aerial imagery. We applied two distinct approaches: a synergistic combination of ViT and support vector machine (SVM), where ViT extracts intricate spatial features from aerial images, and SVM classifies the crops as stressed or healthy and an end-to-end approach using a dedicated classification layer within ViT to directly detect drought stress. Our key findings explain the ViT model's decision-making process by visualizing attention maps. These maps highlight the specific spatial features within the aerial images that the ViT model focuses as the drought stress signature. Our findings demonstrate that the proposed methods not only achieve high accuracy in drought stress identification but also shedding light on the diverse subtle plant features associated with drought stress. This offers a robust and interpretable solution for drought stress monitoring for farmers to undertake informed decisions for improved crop management.

摘要

干旱胁迫的早期检测对于在干旱影响变得不可逆转之前及时采取措施减少作物损失至关重要。非侵入性成像技术能够捕捉到作物对干旱胁迫做出的细微表型和生理变化,这些成像数据是机器学习方法识别干旱胁迫的宝贵资源。虽然卷积神经网络被广泛使用,但视觉Transformer(ViT)在捕捉长距离依赖性和复杂空间关系方面提供了一个有前景的替代方案,从而增强对干旱胁迫细微指标的检测。我们提出了一种可解释的深度学习管道,利用ViT的能力,通过航空图像检测马铃薯作物的干旱胁迫。我们应用了两种不同的方法:ViT和支持向量机(SVM)的协同组合,其中ViT从航空图像中提取复杂的空间特征,SVM将作物分类为受胁迫或健康;以及一种端到端方法,使用ViT中的专用分类层直接检测干旱胁迫。我们的主要发现通过可视化注意力图来解释ViT模型的决策过程。这些图突出了航空图像中ViT模型作为干旱胁迫特征所关注的特定空间特征。我们的研究结果表明,所提出的方法不仅在干旱胁迫识别中取得了高精度,而且还揭示了与干旱胁迫相关的各种细微植物特征。这为农民进行干旱胁迫监测提供了一个强大且可解释的解决方案,以便他们做出明智的决策来改善作物管理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验