Zhao Yu-Hao, Fan Yi-Han, Wu Xiao-Yan, Qin Tian, Sun Qing-Ting, Liang Bao-Hui
School of Medical Imaging, Bengbu Medical University, Bengbu 233000, Anhui Province, China.
School of Mental Health, Bengbu Medical University, Bengbu 233000, Anhui Province, China.
World J Radiol. 2025 Jul 28;17(7):110394. doi: 10.4329/wjr.v17.i7.110394.
Coronary computed tomography angiography (CCTA) is essential for diagnosing coronary artery disease as it provides detailed images of the heart's blood vessels to identify blockages or abnormalities. Traditionally, determining the computed tomography (CT) scanning range has relied on manual methods due to limited automation in this area.
To develop and evaluate a novel deep learning approach to automate the determination of CCTA scan ranges using anteroposterior scout images.
A retrospective analysis was conducted on chest CT data from 1388 patients at the Radiology Department of the First Affiliated Hospital of a university-affiliated hospital, collected between February 27 and March 27, 2024. A deep learning model was trained on anteroposterior scout images with annotations based on CCTA standards. The dataset was split into training (672 cases), validation (167 cases), and test (167 cases) sets to ensure robust model evaluation.
The study demonstrated exceptional performance on the test set, achieving a mean average precision (mAP50) of 0.995 and mAP50-95 of 0.994 for determining CCTA scan ranges.
This study demonstrates that: (1) Anteroposterior scout images can effectively estimate CCTA scan ranges; and (2) Estimates can be dynamically adjusted to meet the needs of various medical institutions.
冠状动脉计算机断层扫描血管造影(CCTA)对于诊断冠状动脉疾病至关重要,因为它能提供心脏血管的详细图像以识别堵塞或异常情况。传统上,由于该领域自动化程度有限,计算机断层扫描(CT)扫描范围的确定一直依赖手工方法。
开发并评估一种新的深度学习方法,利用前后位定位像自动确定CCTA扫描范围。
对一所大学附属医院第一附属医院放射科2024年2月27日至3月27日期间收集的1388例患者的胸部CT数据进行回顾性分析。基于CCTA标准,在带有标注的前后位定位像上训练深度学习模型。数据集被分为训练集(672例)、验证集(167例)和测试集(167例),以确保对模型进行可靠评估。
该研究在测试集上表现出色,确定CCTA扫描范围时平均精度均值(mAP50)达到0.995,mAP50 - 95达到0.994。
本研究表明:(1)前后位定位像能够有效估计CCTA扫描范围;(2)估计值可动态调整以满足不同医疗机构的需求。