文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

整合单细胞调控图谱和多组学数据用于CDK 4/6抑制剂治疗的乳腺癌中的差异治疗反应和多模态预测建模

Integrating single-cell regulatory atlas and multi-omics data for differential treatment response and multimodal predictive modeling in CDK 4/6 inhibitor-treated breast cancer.

作者信息

Yan Li, Chen Sijie, Ran Ran, Zhao Shidi, Huang Jing, Yang Jin

机构信息

Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.

Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.

出版信息

Front Oncol. 2025 Jul 17;15:1585574. doi: 10.3389/fonc.2025.1585574. eCollection 2025.


DOI:10.3389/fonc.2025.1585574
PMID:40746611
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12310732/
Abstract

INTRODUCTION: CDK4/6 inhibitors are cornerstone therapies for advanced HR+/HER2- breast cancer, yet treatment response heterogeneity remains a major clinical challenge. This study integrates single-cell regulatory landscapes with multi-omics data to decode resistance mechanisms and develop predictive biomarkers for CDK4/6 inhibitor response stratification. METHODS: Single-cell RNA-seq data (GSE158724, n=14 samples) and bulk multi-omics profiles (TCGA-BRCA, n=1,059; GSE186901, n=90) were analyzed. Gene regulatory networks were reconstructed using SCENIC to identify resistance-specific regulons. The Tumor Prognostic Regulon Index (TPRI) was derived from five prognostic transcription factors and validated in independent cohorts. Experimental validation including qPCR of core TFs was performed in patient-derived samples. Multimodal predictive models integrating TPRI, differentially expressed genes, and miRNAs were developed using logistic regression, with performance assessed via ROC/AUC analysis. RESULTS: We identified 86 resistance-associated regulons and established TPRI based on five prognostic TFs (ATF1, TEAD4, NFIL3, FOXO1, ETV3). TPRI significantly stratified patients into high/low-risk groups with differential overall survival and treatment response (Fisher's exact test P=0.0237). qPCR confirmed elevated expression of these TFs in resistant tumors (<0.01). High-risk patients exhibited increased stemness indices (mRNAsi, <2.2e-16) and mTOR pathway activation. The multimodal model (TPRI + top 30 DEGs + top 30 miRNAs) achieved superior prognostic accuracy (95%CI:0.6575-0.75). DISCUSSION: This study establishes TPRI as a novel biomarker for CDK4/6 inhibitor response prediction, validated through multi-omics integration and qPCR confirmation. The model provides actionable risk stratification, where high-risk patients may benefit from combinatorial mTOR-targeted therapies. Limitations include sample size constraints for methylation integration. Future studies should validate these findings in prospective clinical trials.

摘要

引言:细胞周期蛋白依赖性激酶4/6(CDK4/6)抑制剂是晚期激素受体阳性/人表皮生长因子受体2阴性(HR+/HER2-)乳腺癌的基础治疗药物,但治疗反应异质性仍然是一个重大的临床挑战。本研究将单细胞调控图谱与多组学数据相结合,以解码耐药机制,并开发用于CDK4/6抑制剂反应分层的预测生物标志物。 方法:分析了单细胞RNA测序数据(GSE158724,n = 14个样本)和批量多组学图谱(TCGA-BRCA,n = 1059;GSE186901,n = 90)。使用SCENIC重建基因调控网络,以识别耐药特异性调控子。肿瘤预后调控子指数(TPRI)源自五个预后转录因子,并在独立队列中进行了验证。在患者来源的样本中进行了包括核心转录因子qPCR在内的实验验证。使用逻辑回归开发了整合TPRI、差异表达基因和微小RNA的多模态预测模型,并通过ROC/AUC分析评估性能。 结果:我们鉴定出86个与耐药相关的调控子,并基于五个预后转录因子(ATF1、TEAD4、NFIL3、FOXO1、ETV3)建立了TPRI。TPRI将患者显著分层为高/低风险组,两组的总生存期和治疗反应存在差异(Fisher精确检验P = 0.0237)。qPCR证实这些转录因子在耐药肿瘤中的表达升高(<0.01)。高风险患者表现出干性指数增加(mRNAsi,<2.2e-16)和mTOR途径激活。多模态模型(TPRI + 前30个差异表达基因 + 前30个微小RNA)实现了卓越的预后准确性(95%CI:0.6575 - 0.75)。 讨论:本研究将TPRI确立为预测CDK4/6抑制剂反应的新型生物标志物,并通过多组学整合和qPCR确认进行了验证。该模型提供了可操作的风险分层,其中高风险患者可能从联合mTOR靶向治疗中获益。局限性包括甲基化整合的样本量限制。未来的研究应在前瞻性临床试验中验证这些发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8397/12310732/62f29ef826c6/fonc-15-1585574-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8397/12310732/1f6dd6099536/fonc-15-1585574-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8397/12310732/7aaad0dfed00/fonc-15-1585574-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8397/12310732/24f568bceaeb/fonc-15-1585574-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8397/12310732/2096b601b3c3/fonc-15-1585574-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8397/12310732/a702ad35e9db/fonc-15-1585574-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8397/12310732/6c039b69140e/fonc-15-1585574-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8397/12310732/f8998621213d/fonc-15-1585574-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8397/12310732/604752d882aa/fonc-15-1585574-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8397/12310732/62f29ef826c6/fonc-15-1585574-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8397/12310732/1f6dd6099536/fonc-15-1585574-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8397/12310732/7aaad0dfed00/fonc-15-1585574-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8397/12310732/24f568bceaeb/fonc-15-1585574-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8397/12310732/2096b601b3c3/fonc-15-1585574-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8397/12310732/a702ad35e9db/fonc-15-1585574-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8397/12310732/6c039b69140e/fonc-15-1585574-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8397/12310732/f8998621213d/fonc-15-1585574-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8397/12310732/604752d882aa/fonc-15-1585574-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8397/12310732/62f29ef826c6/fonc-15-1585574-g009.jpg

相似文献

[1]
Integrating single-cell regulatory atlas and multi-omics data for differential treatment response and multimodal predictive modeling in CDK 4/6 inhibitor-treated breast cancer.

Front Oncol. 2025-7-17

[2]
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

Health Technol Assess. 2006-9

[3]
Identification of biomarkers for Laryngeal squamous cell carcinoma through Mendelian randomization and integrated bioinformatics analysis.

Discov Oncol. 2025-7-18

[4]
Systemic treatments for metastatic cutaneous melanoma.

Cochrane Database Syst Rev. 2018-2-6

[5]
Characterization of novel anoikis-related genes as prognostic biomarkers and key determinants of the immune microenvironment in esophageal cancer.

Front Immunol. 2025-7-11

[6]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[7]
A prognostic microRNA-based signature for localized clear cell renal cell carcinoma: the Bio-miR study.

Br J Cancer. 2025-5-7

[8]
Optimized risk stratification strategy for glioma patients based on the feature genes of poor immune cell infiltration patterns.

J Cancer Res Clin Oncol. 2023-11

[9]
Constructing a tumor immune microenvironment-driven prognostic model in acute myeloid leukemia using bioinformatics and validation data.

Sci Rep. 2025-7-18

[10]
AI-based Hepatic Steatosis Detection and Integrated Hepatic Assessment from Cardiac CT Attenuation Scans Enhances All-cause Mortality Risk Stratification: A Multi-center Study.

medRxiv. 2025-6-11

本文引用的文献

[1]
Optimizing therapeutic approaches for HR+/HER2- advanced breast cancer: clinical perspectives on biomarkers and treatment strategies post-CDK4/6 inhibitor progression.

Cancer Drug Resist. 2025-1-22

[2]
Targeting CDK4/6 in breast cancer.

Exp Mol Med. 2025-2

[3]
Induction of the TEAD Coactivator VGLL1 by Estrogen Receptor-Targeted Therapy Drives Resistance in Breast Cancer.

Cancer Res. 2024-12-16

[4]
RBM8A, a new target of TEAD4, promotes breast cancer progression by regulating IGF1R and IRS-2.

J Transl Med. 2024-9-4

[5]
The Lancet Breast Cancer Commission.

Lancet. 2024-5-11

[6]
Optimal targeting of PI3K-AKT and mTOR in advanced oestrogen receptor-positive breast cancer.

Lancet Oncol. 2024-4

[7]
Updated overall survival from the MONALEESA-3 trial in postmenopausal women with HR+/HER2- advanced breast cancer receiving first-line ribociclib plus fulvestrant.

Breast Cancer Res. 2023-8-31

[8]
Integration of single-cell regulon atlas and multi-omics data for prognostic stratification and personalized treatment prediction in human lung adenocarcinoma.

J Transl Med. 2023-7-25

[9]
Cancer cell employs a microenvironmental neural signal trans-activating nucleus-mitochondria coordination to acquire stemness.

Signal Transduct Target Ther. 2023-7-19

[10]
Dictionary learning for integrative, multimodal and scalable single-cell analysis.

Nat Biotechnol. 2024-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索