Raji-Adefila Basirat, Wang You, Yue Junming, Nordlund Dennis, Zhou Shan, Chen Dongchang
Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States.
Nanoscience & Biomedical Engineering, South Dakota School of Mines & Technology, Rapid City, South Dakota 57701, United States.
JACS Au. 2025 Jul 3;5(7):3203-3212. doi: 10.1021/jacsau.5c00359. eCollection 2025 Jul 28.
In recent years, metastable cation-disordered oxides have had a significant impact on both fundamental and application-driven materials science research. Along this direction, developing new and simple structural types that can accommodate cation disorder at the same crystallographic site has yet to receive extensive research focus. In this work, we use niobium tungsten oxides (NbWOs), a series of materials encompassing diverse structural features, as a material platform to explore new cation-disordered structural types. Relying on mechanochemistry, we realized primitive cubic cation-disordered NbWOs with a ReO-type structure, featuring unique electronic and vibrational properties. Furthermore, when applied as a Li-ion battery anode, the materials undergo a unique perovskite-rock salt structural change mechanism, different from that of complex ordered NbWOs. All these advancements suggest a rich opportunity in developing other new material structural types and realizing new material properties based on the methodology of the work.
近年来,亚稳阳离子无序氧化物对基础材料科学研究和应用驱动的材料科学研究都产生了重大影响。沿着这个方向,开发能够在同一晶体学位置容纳阳离子无序的新型简单结构类型尚未受到广泛的研究关注。在这项工作中,我们使用铌钨氧化物(NbWOs),这是一系列具有多样结构特征的材料,作为探索新型阳离子无序结构类型的材料平台。依靠机械化学方法,我们实现了具有ReO型结构的原始立方阳离子无序NbWOs,其具有独特的电子和振动特性。此外,当用作锂离子电池阳极时,这些材料会经历一种独特的钙钛矿-岩盐结构变化机制,这与复杂有序的NbWOs不同。所有这些进展表明,基于这项工作的方法,在开发其他新型材料结构类型和实现新材料性能方面存在丰富的机会。