冠状动脉疾病与非酒精性脂肪性肝炎之间生物标志物的鉴定:生物信息学与机器学习相结合

Identification of biomarkers between coronary artery disease and non-alcoholic steatohepatitis: a combination of bioinformatics and machine learning.

作者信息

Lin Yihong, Song Jingmei, Li Xiaohong

机构信息

The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.

School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, China.

出版信息

Front Genet. 2025 Jul 17;16:1573621. doi: 10.3389/fgene.2025.1573621. eCollection 2025.

Abstract

BACKGROUND

Non-alcoholic steatohepatitis (NASH) commonly complicates coronary artery disease (CAD), yet the interaction mechanism remains unclear. Our research seeks to investigate the common mechanisms and key signature genes between CAD and NASH.

METHODS

RNA sequence information for CAD and NASH was screened from the GEO database. Weighted gene co-expression network analysis (WGCNA) and differentially expressed gene analysis identified key genes, followed by functional enrichment analysis of these shared genes. Three machine learning methods-LASSO, random forest, and SVM-RFE-were used to identify signature genes. Gene set enrichment analysis (GSEA) was then performed to explore potential mechanisms associated with the signature genes. In addition, single-sample gene set enrichment analysis (ssGSEA) evaluated immune infiltration in CAD and NASH and its correlation with the signature genes.

RESULTS

WGCNA has revealed two key modules for CAD and NASH. The intersection of the CAD modules and their differential genes narrowed the key genes down to 2,808 shared genes. Finally, 44 shared genes were selected for both CAD and NASH. Kyoto Encyclopedia of Genes and Genomes analysis showed that these genes were primarily enriched in insulin resistance and inflammation pathways. Machine learning identified the signature genes BATF3, SOCS2, and GPER, all with ROC values above 0.7, validated in external datasets. GSEA revealed that these genes act through common mechanisms in CAD and NASH, regulating metabolic, inflammatory, and cardiovascular pathways. In addition, ssGSEA suggested their involvement in immune cell infiltration.

CONCLUSION

BATF3, SOCS2, and GPER have emerged as promising gene candidates that may serve as biomarkers or potential therapeutic targets for CAD combined with NASH, linked to the regulation of metabolic, inflammatory, and cardiovascular pathways. We also identified insulin resistance and inflammation pathways as common mechanisms underlying both diseases.

摘要

背景

非酒精性脂肪性肝炎(NASH)常并发冠状动脉疾病(CAD),但其相互作用机制仍不清楚。我们的研究旨在探究CAD和NASH之间的共同机制及关键特征基因。

方法

从GEO数据库中筛选CAD和NASH的RNA序列信息。通过加权基因共表达网络分析(WGCNA)和差异表达基因分析确定关键基因,随后对这些共享基因进行功能富集分析。使用三种机器学习方法——套索回归(LASSO)、随机森林和支持向量机递归特征消除(SVM-RFE)来识别特征基因。然后进行基因集富集分析(GSEA)以探索与特征基因相关的潜在机制。此外,单样本基因集富集分析(ssGSEA)评估CAD和NASH中的免疫浸润及其与特征基因的相关性。

结果

WGCNA揭示了CAD和NASH的两个关键模块。CAD模块与其差异基因的交集将关键基因缩小至2808个共享基因。最终,为CAD和NASH共选择了44个共享基因。京都基因与基因组百科全书分析表明,这些基因主要富集于胰岛素抵抗和炎症途径。机器学习确定了特征基因BATF3、SOCS2和GPER,其在外部数据集中验证的ROC值均高于0.7。GSEA表明,这些基因在CAD和NASH中通过共同机制发挥作用,调节代谢、炎症和心血管途径。此外,ssGSEA提示它们参与免疫细胞浸润。

结论

BATF3、SOCS2和GPER已成为有前景的基因候选物,可能作为CAD合并NASH的生物标志物或潜在治疗靶点,与代谢、炎症和心血管途径的调节相关。我们还确定胰岛素抵抗和炎症途径是这两种疾病的共同潜在机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faf/12310482/1ddc87ed7afc/fgene-16-1573621-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索