Tahayori Bahman, Smith Robert E, Vaughan David N, Tailby Chris, Handwerker Daniel A, Pierre Eric Y, Jackson Graeme D, Abbott David F
bioRxiv. 2025 Jun 21:2025.06.16.660050. doi: 10.1101/2025.06.16.660050.
Multi-echo functional Magnetic Resonance Imaging (fMRI) data are acquired by recording image volumes at multiple echo times and can be used to improve the separation of neural activity from noise. TE-Dependent ANAlysis (tedana) is an open-source software tailored to denoising of multi-echo fMRI data. The efficacy of denoising can however be inconsistent, often necessitating manual inspection that precludes its application in large-scale studies where processing is ideally fully automated. Here, we introduce Robust-tedana, an optimised denoising pipeline that achieves adequate results at both single-subject and group level. Robust-tedana incorporates Marchenko-Pastur Principal Component Analysis (MPPCA) for effective thermal noise reduction, robust independent component analysis for stabilised signal decomposition, and a modified component classification process. We evaluated its performance on Multi-Band Multi-Echo (MBME) language-task fMRI data from the Australian Epilepsy Project (AEP) using objective measures, comparing to conventional fMRI analysis with and without multi-echo-based denoising. Experts' manual evaluation was undertaken on a subset of these data to validate the objective measures. The proposed pipeline both mitigates the prevalence of erroneous attenuation of genuine task activation due to instability of single-subject analysis, and increases the magnitude of group-wise effects. Robust-tedana therefore facilitates advanced analysis of MBME fMRI data in an automated pipeline, including for clinical research assessment of individuals.
多回波功能磁共振成像(fMRI)数据是通过在多个回波时间记录图像体积来获取的,可用于改善神经活动与噪声的分离。基于回波时间的分析(tedana)是一款专门用于多回波fMRI数据去噪的开源软件。然而,去噪效果可能并不一致,常常需要人工检查,这就排除了它在理想情况下完全自动化处理的大规模研究中的应用。在此,我们介绍了稳健版tedana,这是一种优化的去噪流程,在单受试者和组水平上均能取得良好效果。稳健版tedana结合了马尔琴科-帕斯图尔主成分分析(MPPCA)以有效降低热噪声,采用稳健独立成分分析进行稳定的信号分解,并改进了成分分类过程。我们使用客观指标评估了其在澳大利亚癫痫项目(AEP)的多波段多回波(MBME)语言任务fMRI数据上的性能,并与使用和不使用基于多回波去噪的传统fMRI分析进行了比较。对这些数据的一个子集进行了专家人工评估,以验证客观指标。所提出的流程既减轻了由于单受试者分析不稳定导致的真实任务激活错误衰减的发生率,又增加了组水平效应的幅度。因此,稳健版tedana有助于在自动化流程中对MBME fMRI数据进行高级分析,包括用于个体的临床研究评估。