Kumar Anil, Yun Jae Hyun, Thoravat Saurabh, Rawat Pooja, Park Junyoung, Jin Hyungyu, Hyun Dong Jin, Choi Li Koon, Kim Yeonghun, Lee Hyeung Jin, Kim Jin Hee, Rhyee Jong-Soo
Department of Applied Physics and Institute of Natural Sciences, Kyung Hee University, Yongin 17104, Republic of Korea.
Department of Applied Chemistry, Amity School of Applied Sciences, Amity University Haryana, Gurugram 122413, India.
ACS Appl Mater Interfaces. 2025 Aug 13;17(32):45784-45795. doi: 10.1021/acsami.5c10608. Epub 2025 Aug 1.
Lattice mismatch is an intriguing concept that gives rise to various fascinating physical phenomena in emerging research fields such as twistronics and heterostructure devices, which are based on thin films. Although lattice mismatch generates defects and dislocations that significantly affect lattice thermal conductivity, studies on the effects of lattice mismatch in bulk materials remain insufficient. This study investigates the effects of lattice mismatch on the thermoelectric properties of GeTe-based bulk alloys, known for their excellent thermoelectric performance. XRD results of the GeTe-based alloys show the enhanced internal lattice strain (ε), increased dislocation density (δ), and negative thermal expansion, accompanied by phase separations of PbTe or PbSe. The higher internal lattice strain (ε), greater dislocation density (δ), and lower characteristic temperature for negative thermal expansion in the Ge(Ag)Te-PbSe alloy indicate stronger lattice interaction due to an appropriate lattice mismatch compared to the larger lattice mismatch of the Ge(Ag)Te-PbTe alloy. Consequently, the thermoelectric figure of merit (ZT) for Ge(Ag)Te-PbSe is significantly enhanced to 2.0, compared to 1.6 for Ge(Ag)Te-PbTe near 750 K. These results suggest that an appropriate lattice mismatch in bulk alloys can effectively decrease lattice thermal conductivity and generate negative thermal expansion, thereby contributing to thermal stability of thermoelectric modules at high temperatures. The lattice mismatch concept could be a promising approach to reduce lattice thermal conductivity and enhance thermal stability in thermoelectric materials and other high-temperature applications.
晶格失配是一个引人入胜的概念,在诸如基于薄膜的扭曲电子学和异质结构器件等新兴研究领域中引发了各种迷人的物理现象。尽管晶格失配会产生显著影响晶格热导率的缺陷和位错,但对块体材料中晶格失配影响的研究仍然不足。本研究调查了晶格失配对以优异热电性能著称的GeTe基块体合金热电性能的影响。GeTe基合金的XRD结果显示内部晶格应变(ε)增强、位错密度(δ)增加以及负热膨胀,同时伴有PbTe或PbSe的相分离。与Ge(Ag)Te-PbTe合金较大的晶格失配相比,Ge(Ag)Te-PbSe合金中更高的内部晶格应变(ε)、更大的位错密度(δ)以及更低的负热膨胀特征温度表明由于适当的晶格失配导致更强的晶格相互作用。因此,Ge(Ag)Te-PbSe的热电优值(ZT)显著提高到2.0,而在750 K附近Ge(Ag)Te-PbTe的热电优值为1.6。这些结果表明,块体合金中适当的晶格失配可以有效降低晶格热导率并产生负热膨胀,从而有助于热电模块在高温下的热稳定性。晶格失配概念可能是一种在热电材料和其他高温应用中降低晶格热导率并提高热稳定性的有前景的方法。