Hoessly Linard, Frossard Jaromil, Schwab Simon, Chammartin Frédérique, Leichtle Alexander, Schreiber Peter Werner, Neofytos Dionysios, Koller Michael
Data Center of the Swiss Transplant Cohort Study, University Hospital Basel, Basel, Switzerland.
Swisstransplant, Bern, Switzerland.
PLoS One. 2025 Aug 1;20(8):e0328696. doi: 10.1371/journal.pone.0328696. eCollection 2025.
The integration of machine learning methodologies has become prevalent in the development of clinical prediction models, often suggesting superior performance compared to traditional statistical techniques. Within the scope of low-dimensional datasets, encompassing both classical and machine learning paradigms, we plan to undertake a comparison of variable selection methodologies through simulation-based analysis. The principal aim is the comparison of the variable selection strategies with respect to relative predictive accuracy and its variability, with a secondary aim the comparison of descriptive accuracy. We use six distinct statistical learning approaches across both data generation and model learning. The present manuscript is a protocol for the corresponding simulation study registration (Study registration Open Science Framework ID: k6c8f). We describe the planned steps through the Aims, Data, Estimands, Methods, and Performance framework for simulation study design and reporting.
机器学习方法的整合在临床预测模型的开发中已变得十分普遍,与传统统计技术相比,其表现往往更优。在低维数据集范围内,涵盖经典和机器学习范式,我们计划通过基于模拟的分析对变量选择方法进行比较。主要目的是比较变量选择策略在相对预测准确性及其变异性方面的表现,次要目的是比较描述准确性。我们在数据生成和模型学习过程中使用六种不同的统计学习方法。本手稿是相应模拟研究注册的方案(研究注册开放科学框架识别码:k6c8f)。我们通过模拟研究设计和报告的目标、数据、估计量、方法和性能框架来描述计划步骤。