Cunningham Eoghan, Greene Derek
School of Computer Science, University College Dublin, Dublin, Ireland.
Insight Centre for Data Analytics, Dublin, Ireland.
PLoS One. 2025 Aug 1;20(8):e0329302. doi: 10.1371/journal.pone.0329302. eCollection 2025.
The advancement of science relies on the exchange of ideas across disciplines and the integration of diverse knowledge domains. However, tracking knowledge flows and interdisciplinary integration in rapidly evolving, multidisciplinary fields remains a significant challenge. This work introduces a novel network analysis framework to study the dynamics of knowledge transfer directly from citation data. By applying dynamic community detection to cumulative, time-evolving citation networks, we can identify research areas as groups of papers sharing knowledge sources and outputs. Our analysis characterises the life-cycles and knowledge transfer patterns of these dynamic communities over time. We demonstrate our approach through a case study of eXplainable Artificial Intelligence (XAI) research, an emerging interdisciplinary field at the intersection of machine learning, statistics, and psychology. Key findings include: (i) knowledge transfer between these important foundational topics and the contemporary topics in XAI research is limited, and the extent of knowledge transfer varies across different contemporary research topics; (ii) certain application domains exist as isolated "knowledge silos"; (iii) significant "knowledge gaps" are identified between related XAI research areas, suggesting opportunities for cross-pollination and improved knowledge integration. By mapping interdisciplinary integration and bridging knowledge gaps, this work can inform strategies to synthesise ideas from disparate sources and drive innovation. More broadly, our proposed framework enables new insights into the evolution of knowledge ecosystems directly from citation data, with applications spanning literature review, research planning, and science policy.
科学的进步依赖于跨学科的思想交流和不同知识领域的整合。然而,在快速发展的多学科领域中追踪知识流动和跨学科整合仍然是一项重大挑战。这项工作引入了一个新颖的网络分析框架,以直接从引文数据研究知识转移的动态过程。通过将动态社区检测应用于累积的、随时间演变的引文网络,我们可以将研究领域识别为共享知识来源和产出的论文组。我们的分析刻画了这些动态社区随时间的生命周期和知识转移模式。我们通过对可解释人工智能(XAI)研究的案例分析来展示我们的方法,XAI研究是机器学习、统计学和心理学交叉处的一个新兴跨学科领域。主要发现包括:(i)这些重要基础主题与XAI研究中的当代主题之间的知识转移有限,并且知识转移的程度因不同的当代研究主题而异;(ii)某些应用领域作为孤立的“知识孤岛”存在;(iii)在相关的XAI研究领域之间发现了重大的“知识差距”,这表明存在交叉融合和改善知识整合的机会。通过绘制跨学科整合并弥合知识差距,这项工作可以为整合来自不同来源的思想并推动创新的策略提供信息。更广泛地说,我们提出的框架能够直接从引文数据中对知识生态系统的演变获得新的见解,其应用涵盖文献综述、研究规划和科学政策。