Suppr超能文献

具有N掺杂碳的晶态-非晶态CoS-MoS异质结构的形貌工程与界面电子调制用于快速稳定的钠离子存储

Morphology engineering and interface electron modulation of crystalline-amorphous CoS-MoS heterostructure with N-doped carbon for fast and stable sodium-ion storage.

作者信息

Luo Junmei, Bo Shufeng, Park Seohyun, Park Beom-Kyeong, Li Oi Lun

机构信息

School of Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea.

School of Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea.

出版信息

J Colloid Interface Sci. 2025 Dec 15;700(Pt 3):138515. doi: 10.1016/j.jcis.2025.138515. Epub 2025 Jul 27.

Abstract

Rational design and synthesis of robust and reversible anode materials are critical for sodium-ion storage; however, further development remains hindered by sluggish kinetics, volume expansion, and unsatisfactory cycling stability. To address these issues, precise structural optimization and interface modulation are highly desirable. Herein, a hierarchical hollow crystalline-amorphous CoS-MoS heterojunction coated with N-doped carbon (CoS-MoS@NC) is designed and prepared via facile reduction/oxidation reactions, polydopamine coating, and sulfurization processes. The hierarchical hollow structure along with N-doped carbon provides internal buffering space, relieves volume variations, and enhances the conductivity. Moreover, crystalline-amorphous CoS-MoS heterostructure offers the abundant active sites and induces an interfacial electric field via electron redistribution, thus enhancing Na adsorption and diffusion abilities and overall electrochemical performances as evidenced by experimental and theoretical results. Benefiting from these structural and interfacial advantages, CoS-MoS@NC exhibits superior rate performance (362.3 mAh g at 10.0 A g) and excellent cycling stability (511.1 mAh g at 2.0 A g after 1000 cycles). In addition, CoS-MoS@NC//NaV(PO) full cell evinces impressive performance and practical application potential. Furthermore, various ex-situ characterizations verify a reversible intercalation-conversion storage mechanism throughout the sodiation/desodiation processes. The strategic integration of rational morphology engineering and heterostructure construction in this work provides valuable insights into the development of advanced anodes for efficient and durable energy storage systems.

摘要

合理设计和合成坚固且可逆的阳极材料对于钠离子存储至关重要;然而,动力学缓慢、体积膨胀和循环稳定性不理想等问题仍阻碍着其进一步发展。为了解决这些问题,精确的结构优化和界面调控非常必要。在此,通过简便的还原/氧化反应、聚多巴胺包覆和硫化过程,设计并制备了一种包覆有氮掺杂碳的分级中空晶体 - 非晶态CoS - MoS异质结(CoS - MoS@NC)。分级中空结构与氮掺杂碳一起提供了内部缓冲空间,缓解了体积变化,并提高了导电性。此外,晶体 - 非晶态CoS - MoS异质结构提供了丰富的活性位点,并通过电子重新分布诱导了界面电场,从而增强了钠的吸附和扩散能力以及整体电化学性能,实验和理论结果均证明了这一点。得益于这些结构和界面优势,CoS - MoS@NC表现出优异的倍率性能(在10.0 A g下为362.3 mAh g)和出色的循环稳定性(在2.0 A g下循环1000次后为511.1 mAh g)。此外,CoS - MoS@NC//NaV(PO)全电池表现出令人印象深刻的性能和实际应用潜力。此外,各种非原位表征验证了在整个 sodiation/desodiation 过程中存在可逆的嵌入 - 转化存储机制。这项工作中合理的形貌工程和异质结构构建的策略性整合为开发高效耐用储能系统的先进阳极提供了有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验