Kim-Yip Rebecca P, Denberg David, Faerberg Denis F, Nunley Hayden, Leite Isabella, Chalifoux Madeleine, Joyce Bradley, Toettcher Jared, Gu Bin, Posfai Eszter
Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA.
Curr Biol. 2025 Jul 26. doi: 10.1016/j.cub.2025.07.031.
The segregation of the epiblast (EPI) and primitive endoderm (PE) cell types in the preimplantation mouse embryo is not only a crucial decision that sets aside the precursors of the embryo proper from extraembryonic cells, respectively, but also has served as a central model to study a key concept in mammalian development: how much of developmental patterning is predetermined vs. stochastically emergent. Here, we address this question by quantitative live imaging of multiple endogenously tagged transcription factors key to this fate decision and trace their dynamics at a single-cell resolution through the formation of EPI and PE cell fates. Strikingly, we reveal an initial symmetry breaking event, the formation of a primary EPI cell lineage, and show that this is linked to the dynamics of the prior inner cell mass/trophectoderm fate decision through the expression of SOX2. This primary EPI lineage, through fibroblast growth factor (FGF) signaling, induces an increase in the transcription factor GATA6 in other inner cell mass cells, setting them on the course toward PE differentiation. Interestingly, this trajectory can switch during a defined developmental window, leading to the emergence of secondary EPI cells. Finally, we show that early expression levels of NANOG, which are seemingly stochastic, can bias whether a cell's trajectory switches to secondary EPI or continues as PE. Our data give unique insight into how fate patterning is initiated and propagated during unperturbed embryonic development through the interplay of lineage-history-biased and stochastic cell-intrinsic molecular features, unifying previous models of EPI/PE segregation.
着床前小鼠胚胎中,上胚层(EPI)和原始内胚层(PE)细胞类型的分离不仅是一个关键决定,它分别将胚胎本体的前体与胚外细胞区分开来,而且还成为研究哺乳动物发育中一个关键概念的核心模型:发育模式在多大程度上是预先确定的,以及在多大程度上是随机出现的。在这里,我们通过对多个内源性标记的转录因子进行定量实时成像来解决这个问题,这些转录因子是这个命运决定的关键,并且通过EPI和PE细胞命运的形成,以单细胞分辨率追踪它们的动态。令人惊讶的是,我们揭示了一个初始的对称性破缺事件,即主要EPI细胞谱系的形成,并表明这与先前通过SOX2表达的内细胞团/滋养外胚层命运决定的动态有关。这个主要的EPI谱系通过成纤维细胞生长因子(FGF)信号传导,诱导其他内细胞团细胞中转录因子GATA6的增加,使它们走上PE分化的道路。有趣的是,这条轨迹在一个确定的发育窗口期间可以切换,导致次级EPI细胞的出现。最后,我们表明,看似随机的NANOG早期表达水平可以影响一个细胞的轨迹是切换到次级EPI还是继续作为PE。我们的数据为在不受干扰的胚胎发育过程中,命运模式如何通过谱系历史偏向和随机细胞内在分子特征的相互作用启动和传播提供了独特的见解,统一了先前关于EPI/PE分离的模型。