Suppr超能文献

胚胎植入前小鼠的核实例分割和跟踪。

Nuclear instance segmentation and tracking for preimplantation mouse embryos.

机构信息

Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, NY 10010, USA.

Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.

出版信息

Development. 2024 Nov 1;151(21). doi: 10.1242/dev.202817. Epub 2024 Nov 6.

Abstract

For investigations into fate specification and morphogenesis in time-lapse images of preimplantation embryos, automated 3D instance segmentation and tracking of nuclei are invaluable. Low signal-to-noise ratio, high voxel anisotropy, high nuclear density, and variable nuclear shapes can limit the performance of segmentation methods, while tracking is complicated by cell divisions, low frame rates, and sample movements. Supervised machine learning approaches can radically improve segmentation accuracy and enable easier tracking, but they often require large amounts of annotated 3D data. Here, we first report a previously unreported mouse line expressing near-infrared nuclear reporter H2B-miRFP720. We then generate a dataset (termed BlastoSPIM) of 3D images of H2B-miRFP720-expressing embryos with ground truth for nuclear instances. Using BlastoSPIM, we benchmark seven convolutional neural networks and identify Stardist-3D as the most accurate instance segmentation method. With our BlastoSPIM-trained Stardist-3D models, we construct a complete pipeline for nuclear instance segmentation and lineage tracking from the eight-cell stage to the end of preimplantation development (>100 nuclei). Finally, we demonstrate the usefulness of BlastoSPIM as pre-train data for related problems, both for a different imaging modality and for different model systems.

摘要

对于在胚胎植入前的延时图像中进行命运特化和形态发生的研究,自动化的 3D 实例分割和核追踪是非常宝贵的。低信噪比、高体素各向异性、高核密度和可变的核形状会限制分割方法的性能,而追踪则受到细胞分裂、低帧率和样本运动的影响。监督机器学习方法可以极大地提高分割准确性并实现更简单的追踪,但它们通常需要大量的标注 3D 数据。在这里,我们首先报告了一个以前未报道的表达近红外核报告基因 H2B-miRFP720 的小鼠品系。然后,我们生成了一个具有核实例真实数据的 H2B-miRFP720 表达胚胎的 3D 图像数据集(称为 BlastoSPIM)。使用 BlastoSPIM,我们对七个卷积神经网络进行了基准测试,并确定 Stardist-3D 是最准确的实例分割方法。使用我们的 BlastoSPIM 训练的 Stardist-3D 模型,我们构建了一个从八细胞阶段到植入前发育结束(>100 个核)的核实例分割和谱系追踪的完整流水线。最后,我们展示了 BlastoSPIM 作为相关问题的预训练数据的有用性,无论是对于不同的成像模式还是对于不同的模型系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ade/11574361/166f84a98e79/develop-151-202817-g1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验